iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10287-006-0029-5
Optimal stopping problems by two or more decision makers: a survey | Computational Management Science Skip to main content
Log in

Optimal stopping problems by two or more decision makers: a survey

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

A review of the optimal stopping problem with more than a single decision maker (DM) is presented in this paper. We classify the existing literature according to the arrival of the offers, the utility of the DMs, the length of the sequence of offers, the nature of the game and the number of offers to be selected. We enumerate various definitions for this problem and describe some dynamic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben Abdelaziz F, Krichen S (2005) An interactive method for the optimal selection problem with two decision makers. Eur J Oper Res 162:602–609

    Article  Google Scholar 

  • Chen RW, Rosenberg B, Shepp LA (1997) A secretary problem with two decision makers. J Appl Prob 34:1068–1074

    Article  Google Scholar 

  • Chun YH, Moskowitz H, Plante RD (1990) Optimal selection strategy for the group interview problem. Deci Sci 24:295–313

    Google Scholar 

  • Chun YH, Moskowitz H, Plante RD (1994) Dynamic programming formulation of the group interview problem with a general utility function. Eur J Oper Res 78:81–92

    Article  Google Scholar 

  • Chun YH (1996) Selecting the best choice in the weighted secretary problem. Eur J Oper Res 92:135–147

    Article  Google Scholar 

  • Cripps M (1998) Markov Bargaining Games. J Econ Dyn Control 22:341–355

    Article  Google Scholar 

  • Dynkin EB (1963) The optimum choice of the instant for stopping a markov process. Sov Math Dokl. 4:627–629

    Google Scholar 

  • Enns EG, Ferenstein E (1985) The horse game. J Oper Res Soc Japan 28(1):51–62

    Google Scholar 

  • Enns EG, Ferenstein E (1987) On a multi-person time-sequential game with priorities. Sequen Anal 6(3):239–256

    Google Scholar 

  • Enns EG, Ferenstein E (1990) A competitive best-choice problem with poisson arrivals. J Appl Prob 27:333–342

    Article  Google Scholar 

  • Ferguson TS (1989) Who solved the secretary problem? Stat Sci 4(3):282–296

    Google Scholar 

  • Fogelman-Soulie F, Munier B, Shakun MF (1983) Bivariate negotiations as a problem of stochastic terminal control. Manage Sci 29(7):840–855

    Google Scholar 

  • Freeman PR (1983) The secretary problem and its extensions: a review. Int Stat Rev 51:189–206

    Article  Google Scholar 

  • Gilbert J, Mosteller F (1966) Recognizing the maximum of a sequence. Am Stat Assoc J 61:35–73

    Article  Google Scholar 

  • Kurano M, Yasuda M, Nakagami J (1980) Multi-variate stopping problem with a majority rule. J Oper Res Soc Japan 23:205–223

    Google Scholar 

  • Lindley DV (1961) Dynamic programming and decision theory. Appl Stat 10:39–51

    Article  Google Scholar 

  • Majumdar AAK (1985) Optimal stopping for a two-person sequential game in the continuous case. Pure Appl Math Sci XXII(1–2):79–89

    Google Scholar 

  • Majumdar AAK (1986) Optimal stopping for a two-person sequential game in the discrete case. Pure Appl Math Sci XXIII(1–2):67–75

    Google Scholar 

  • Majumdar AAK (1987) Optimal stopping for a full-information bilateral sequential game related to the secretary problem. Math Jpn 32(1):63–74

    Google Scholar 

  • Presman EL, Sonin IM (1975) Equilibrium points in a game related to the best choice problem. Theory Prob Appl XX(4):770–781

    Google Scholar 

  • Radzik T, Szajowski K (1990) Sequential games with random priority. Sequen Anal 9(4):361–377

    Google Scholar 

  • Ravindran G, Szajowski (1992) Non-zero sum game with priority as Dynkin’s game. Math Jpn 37(3):401–413

    Google Scholar 

  • Rose JS (1984) Twenty years of secretary problems: a survey of developments in the theory of optimal choice. Adv Manag Stud 1(1):53–64

    Google Scholar 

  • Roth A, Kadane JB, DeGroot MH (1977) Optimal peremptory challenges in trials by juries: a bilateral sequential process. Oper Res 25(6):901–919

    Google Scholar 

  • Sakaguchi M (1977) A sequential allocation game for targets with varying values. J Oper Res Soc Jpn 20(3):182–193

    Google Scholar 

  • Sakaguchi M (1978a) When to stop: randomly appearing bivariate target values. J Oper Res Soc Jpn 21(1):45–57

    Google Scholar 

  • Sakaguchi M (1978b) A bilateral sequential game for sums of bivariate random variables. J Oper Res Soc Jpn 21(4):486–507

    Google Scholar 

  • Sakaguchi M (1978c) Dowry problems and OLA policies. Rep Stat Res JUSE 25(3):124–128

    Google Scholar 

  • Sakaguchi M (1980) Non-zero-sum games related to the secretary problem. J Oper Res Soc Jpn 23(3):287–292

    Google Scholar 

  • Sakaguchi M (1984a) Bilateral sequential games related to the no-information secretary problem. Math Jpn 29(6):961–973

    Google Scholar 

  • Sakaguchi M (1984b) A time-sequential game related to an arbitration procedure. Math Jpn 29(3):491–502

    Google Scholar 

  • Sakaguchi M (1985a) The bilateral secretary problem with a random population size. Math Jpn 30(3):457–469

    Google Scholar 

  • Sakaguchi M (1985b) Non-zero-sum games for some generalized secretary problems. Math Jpn 30(4):585–603

    Google Scholar 

  • Sakaguchi M (1988) Linear Programming formulations for games with multiple payoffs. Math Jpn 33(1):133–145

    Google Scholar 

  • Sakaguchi M (1989a) Some infinite problems in classical secretary problems. Math Jpn 34(2):307–318

    Google Scholar 

  • Sakaguchi M (1989b) Multiperson multilateral secretary problems. Math Jpn 34(3):459–473

    Google Scholar 

  • Sakaguchi M (1989c) Some two person bilateral games in the generalized secretary problem. Math Jpn 34(4):637–654

    Google Scholar 

  • Sakaguchi M (1991a) Sequential games with priority under expected value maximization. Math Jpn 36(3):545–562

    Google Scholar 

  • Sakaguchi M (1991b) Best-choice games with random priority on a two-Poisson stream. Math Jpn 36(4):731–745

    Google Scholar 

  • Sakaguchi M (1992) Sequential deception games. Math Jpn 37(5):813–826

    Google Scholar 

  • Sakaguchi M (1995a) Optimal stopping games for bivariate uniform distribution. Math Jpn 41(3):677–687

    Google Scholar 

  • Sakaguchi M (1995b) Optimal stopping games – A review. Math Jpn 42(2):343–351

    Google Scholar 

  • Sakaguchi M (2000) A best-choice problem for the two streams of IID random variables. Math Jpn 51(3):471–478

    Google Scholar 

  • Sakaguchi M (2003) Non-zero-sum best-choice games where two stops are required. Scientiae Math Jpn 58(1):137–148

    Google Scholar 

  • Sakaguchi M, Mazalov V (2004) A non-zero-sum no-information best-choice game. Math Methods Oper Res 60(3):437–451

    Article  Google Scholar 

  • Salminen P, Teich JE, Wallenius J (1996) A decision model for the multiple criteria group secretary problem: theoretical considerations. J Oper Res Soc 47(8):1046–1053

    Article  Google Scholar 

  • Stadje (1985) On multiple stopping rules. Optimization 16(3):401–418

    Google Scholar 

  • Steuer R (1986) Multiple Criteria Optimization: Theory, Computation, and Application. Wiley, New York

    Google Scholar 

  • Stewart TJ (1981) The secretary problem with an unknown number of options. Oper Res 29(1):130–145

    Article  Google Scholar 

  • Sweet T (1994) Optimizing a single uncertain selection with recall of observations. J Appl Prob 31:660–672

    Article  Google Scholar 

  • Szajowski K (1993) Double stopping by two decision-makers. Adv Appl Prob 25:438–452

    Article  Google Scholar 

  • Szajowski K, Yasuda A (1997) Voting procedure on stopping games of Markov chain. Lecture notes in economics and mathematical system 445:68–80

    Google Scholar 

  • Villareal B, Karwan MH (1981) An interactive dynamic programming approach to multicriteria discrete programming. J Math Anal Appl 81:524–544

    Article  Google Scholar 

  • Villareal B, Karwan MH (1982) Multicriteria dynamic programming with an application to the integer case. J Optim Theory Appl 38(1):43–69

    Article  Google Scholar 

  • Yasuda M, Nakagami J, Kurano M (1982) Multi-variate stopping problem with a monotone rule. J Oper Res Soc Jpn 25:334–350

    Google Scholar 

  • Yasuda M (1985) On a randomized strategy in Neuveu’s stopping problem. Stochastic Processes Appl 21:159–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Ben Abdelaziz.

Additional information

Fouad Ben Abdelaziz is on leave from the Institut Superieur de Gestion, University of Tunis, Tunisia e-mail: foued.benabdelaz@isg.run.tn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelaziz, F.B., Krichen, S. Optimal stopping problems by two or more decision makers: a survey. CMS 4, 89–111 (2007). https://doi.org/10.1007/s10287-006-0029-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-006-0029-5

Keywords

Navigation