iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S10107-004-0563-2
Polynomial inequalities representing polyhedra | Mathematical Programming Skip to main content

Advertisement

Log in

Polynomial inequalities representing polyhedra

  • Published:
Mathematical Programming Submit manuscript

Abstract.

Our main result is that every n-dimensional polytope can be described by at most 2n−1 polynomial inequalities and, moreover, these polynomials can explicitly be constructed. For an n-dimensional pointed polyhedral cone we prove the bound 2n−2 and for arbitrary polyhedra we get a constructible representation by 2n polynomial inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems, Doc. Math., J. DMV, Extra Vol. ICM Berlin 1998 III (1998), 645–656.

    Google Scholar 

  2. Andradas, C., Bröcker, L., Ruiz, J.M.: Constructible sets in real geometry, Springer, Berlin, (1996)

  3. Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry, Springer, New York, (1998)

  4. Bernig, A.: Constructions for the theorem of Bröcker and Scheiderer, Master’s thesis, Universität Dortmund, (1998)

  5. Bosse, H.: Describing polyhedra by polynomial inequalities, Master’s thesis, Technische Universität Berlin, (2003)

  6. Bröcker, L.: On basic semialgebraic sets, Expo. Math. 9, 289–334 (1991)

    MathSciNet  Google Scholar 

  7. Grötschel, M., Henk, M.: The representation of polyhedra by polynomial inequalities, Discrete Comput. Geom. 29 (2003), no. 4, 485–504.

    Google Scholar 

  8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, 2nd, corr. ed., 3rd printing ed., Algorithms and Combinatorics, vol. 2, Springer, Berlin Heidelberg, (1993)

  9. Mahé, L.: Une démonstration élémentaire du théoréme de Bröcker-Scheiderer, C.R. Acad. Sc. Paris 309 (1989), no. I, 613–616.

  10. McMullen P., Shephard, G.C.: Convex polytopes and the upper bound conjecture, Cambridge University Press, Cambridge, (1971)

  11. Scheiderer, C.: Stability index of real varieties, Inventiones Math. 97 (1989), no. 3, 467–483.

  12. vom Hofe, G.: Beschreibung von ebenen konvexen n-Ecken durch höchstens drei algebraische Ungleichungen, Ph.D. thesis, Universität Dortmund, (1992)

  13. Ziegler, G.M.: Lectures on polytopes, Springer, Berlin, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Grötschel.

Additional information

Supported by the DFG Research Center “Mathematics for key technologies” (FZT 86) in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosse, H., Grötschel, M. & Henk, M. Polynomial inequalities representing polyhedra. Math. Program. 103, 35–44 (2005). https://doi.org/10.1007/s10107-004-0563-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-004-0563-2

Keywords

Navigation