iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00530-020-00718-W
RDH-based dynamic weighted histogram equalization using for secure transmission and cancer prediction | Multimedia Systems Skip to main content

Advertisement

Log in

RDH-based dynamic weighted histogram equalization using for secure transmission and cancer prediction

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Image contrast enhancement is a prerequisite and plays a very important role in many image processing field like medical imaging, face recognition, computer-vision, and satellite imaging. In this paper we proposed reversible data hiding based Limited Dynamic Weighted Histogram Equalization techniques for Abnormal Tumor regions which improve the contrast, transmit the hidden secret information, preserve its brightness intensity and original appearance of the image. We have implemented Otsu’s method to segment the input image into two sub-histogram regions of interest (ROI) and non-region of interest; furthermore, the sub-histograms ROI region equalized independently without of over-enhancement and any loss of hidden and diagnostic data. Our proposed method is more efficient to precisely preserve the brightness of the image and extract the secret information with contrast image reversibly; besides, different classifiers are used to classify the brain cancer to check the performance of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ni, Z., Shi, Y.Q., Ansari, N., et al.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)

    Article  Google Scholar 

  2. Wu, M.H., Zhao, J., Chen, B., Zhang, Y., Yu, Y., Cheng, J.: Reversible data hiding based on medical image systems by means of histogram strategy. In: Proceedings of the 2018 3rd International Conference on Information Systems Engineering (ICISE), pp. 6-9. IEEE, Shanghai, China (2018)

  3. Chang, J.C., Lu, Y.Z., Wu, H.L.: A separable reversible data hiding scheme for encrypted JPEG bitstreams. Signal Process. 133, 135–143 (2017)

    Article  Google Scholar 

  4. Vo, P.H., Nguyen, T.S., Huynh, V.T., et al.: A novel reversible data hiding scheme with two-dimensional histogram shifting mechanism. Multimed. Tools Appl. 77, 1–21 (2018)

    Article  Google Scholar 

  5. Caciula, I., Coanda, H.G., Coltuc, D.: Multiple moduli prediction error expansion reversible data hiding. Signal Process. Image Commun. 71, 120–127 (2019)

    Article  Google Scholar 

  6. Abbasi, R., Xu, L., Amin, F., et al.: Efficient lossless compression based reversible data hiding using multilayered n-Bit localization. Secur. Commun. Netw. 2019, 1–13 (2019)

    Article  Google Scholar 

  7. Abbasi, R., Faseeh, Qureshi, N, M., Hassan, H, et al.: Generalized PVO-based dynamic block reversible data hiding for secure transmission using firefly algorithm. Trans. Emerg. Telecommun. Technol. 31, e3680 (2019)

    Google Scholar 

  8. Hassan, H., Luo, B., Xin, Q., Abbasi, R., Ahmad, W.: single image dehazing from repeated averaging filters. In: Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 1053–1056. IEEE, Chongqing, China (2019)

  9. Tsafack, N., Sankar, S., Abd-El-Atty, B., Kengne, J., Jithin, K.C., Belazi, A., Mehmood, I., Bashir, A.K., Song, O.Y., Abd El-Latif, A.A.: A new chaotic map with dynamic analysis and encryption application in internet of health things. IEEE Access 21(8), 137731–44 (2020)

    Article  Google Scholar 

  10. Chen, S.D., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  11. Gupta, B., Agarwal, T.K.: Linearly quantile separated weighted dynamic histogram equalization for contrast enhancement. Comput. Electr. Eng. 62, 360–374 (2017)

    Article  Google Scholar 

  12. Jasmine, J., Annadurai, S.: Real time video image enhancement approach using particle swarm optimisation technique with adaptive cumulative distribution function based histogram equalization. Measurement 145, 833–840 (2019)

    Article  Google Scholar 

  13. Hassan, H., Bashir, A.K., Abbasi, R., et al.: Single image defocus estimation by modified Gaussian function. Trans. Emerg. Telecommun. Technol. 30(6), e3611 (2019)

    Google Scholar 

  14. Ahmad, M., Bashir, A.K., Khan, A.M.: Metric similarity regularizer to enhance pixel similarity performance for hyperspectral unmixing. Optik 140, 86–95 (2017)

    Article  Google Scholar 

  15. Yan, C., Gong, B., Wei, Y., Gao, Y.: Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1–1 (2020)

  16. Yan, C., Shao, B., Zhao, H., Ning, R., Zhang, Y., Xu, F.: 3d room layout estimation from a single rgb image. IEEE Trans. Multimed. 17, 3014–3024 (2020)

    Article  Google Scholar 

  17. Thanki, R.M., Kothari, A.M.: Applications of digital image processing. In: Digital Image Processing using SCILAB, pp. 143–150. Springer, Cham (2019)

  18. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  19. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (1999)

    Article  Google Scholar 

  20. Sim, K.S., Tso, C.P., Tan, Y.Y.: Recursive sub-image histogram equalization applied to gray scale images. Pattern Recognit. Lett. 28(10), 1209–1221 (2007)

    Article  Google Scholar 

  21. Kim, M., Chung, M.G.: Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Trans. Consum. Electron. 54(3), 1389–1397 (2008)

    Article  Google Scholar 

  22. Maini, R., Aggarwal, H.: Study and comparison of various image edge detection techniques. Int. J. Image Process (IJIP) 3(1), 1–11 (2009)

    Google Scholar 

  23. Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Baby, J., Karunakaran, V.: Bi-level weighted histogram equalization with adaptive gamma correction. Int. J. Comput. Eng. Res. (IJCER) 4(3), 25–30 (2014)

    Google Scholar 

  25. Agarwal, M., Mahajan, R.: Medical images contrast enhancement using quad weighted histogram equalization with adaptive gamma correction and homomorphic filtering. Procedia Comput. Sci. 115, 509–517 (2017)

    Article  Google Scholar 

  26. Gautam, C., Tiwari N.: Efficient color image contrast enhancement using range limited bi-histogram equalization with adaptive gamma correction. In: Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC), pp. 175–180. IEEE, Pune, India (2015)

  27. Agarwal, T.K., Tiwari, M., Lamba, S.S.: Modified histogram based contrast enhancement using homomorphic filtering for medical images. In: Proceedings of the 2014 IEEE International Advance Computing Conference (IACC). Gurgaon, India (2014)

  28. Gupta, B., Tiwari, M.: Color retinal image enhancement using luminosity and quantile based contrast enhancement. Multidimens. Syst. Signal Process. 30, 1–9 (2019)

    Article  MATH  Google Scholar 

  29. Srivastava, G., Rawat, T.K.: Histogram equalization: a comparative analysis & a segmented approach to process digital images. In: Proceedings of the 2013 Sixth International Conference on Contemporary Computing (IC3), pp. 81–85. IEEE, Noida, India (2013)

  30. Agarwal, M., Mahajan, R.: Medical image contrast enhancement using range limited weighted histogram equalization. Procedia Comput. Sci. 125, 149–156 (2018)

    Article  Google Scholar 

  31. Ali, L., Hussain, A., Li, J., Shah, A., Sudhakr, U., Mahmud, M., Zakir, U., Yan, X., Luo, B., Rajak, M.: Intelligent image processing techniques for cancer progression detection, recognition and prediction in the human liver. In: Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE), pp. 25–31. IEEE, Orlando, FL, USA (2014)

  32. Auer, T., Heidegger, I., De Zordo, T., et al.: Fusion imaging of contrast-enhanced ultrasound with CT or MRI for kidney lesions. In Vivo 33(1), 203–208 (2019)

    Article  Google Scholar 

  33. Xu, Y., Wang, Y., Yuan, J., et al.: Medical breast ultrasound image segmentation by machine learning. Ultrasonics 91, 1–9 (2019)

    Article  Google Scholar 

  34. Iqbal, S., Ghani Khan, M.U., Saba, T., Mehmood, Z., Javaid, N., Rehman, A., Abbasi, R.: Deep learning model integrating features and novel classifiers fusion for brain tumor segmentation. Microsc. Res. Tech. 82(8), 1302–15 (2019g)

    Article  Google Scholar 

  35. Iqbal, M.S., Khan, T., Hussain, S., Mahmood, R., El-Ashram, S., Abbasi, R., Luo, B.: Cell recognition of microscopy images of TPEF (two photon excited florescence) probes. Procedia Comput. Sci. 6(1), 77–83 (2019)

    Article  Google Scholar 

  36. Reddy, T., Bhattacharya, S., Maddikunta, P.K., Hakak, S., Khan, W.Z., Bashir, A.K., Jolfaei, A., Tariq, U.: Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset. Multimed. Tools Appl. 9, 1–25 (2020)

    Google Scholar 

  37. Rodrigues, S.G., Montani, M., Guix-Muntet, S., et al.: Patients with signs of advanced liver disease and clinically significant portal hypertension do not necessarily have cirrhosis. Clin. Gastroenterol. Hepatol. 17, 2101–2109 (2019)

    Article  Google Scholar 

  38. Abbasi, R., Luo, B., Rehman, G., et al.: A new multilevel reversible bit-planes data hiding technique based on histogram shifting of efficient compressed domain. Vietnam J. Comput. Sci. 5, 1–12 (2018)

    Article  Google Scholar 

  39. Guo, L.H., Wang, D., Qian, Y.Y., et al.: A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clin. Hemorheol. Microcirc. 69, 1–12 (2018)

    Article  Google Scholar 

  40. Zhan, Y., Zhou, F., Yu, X., et al.: Quantitative dynamic contrast-enhanced ultrasound may help predict the outcome of hepatocellular carcinoma after microwave ablation. Int. J. Hyperth. 35(1), 105–111 (2019)

    Article  Google Scholar 

  41. Venkatraghavan, V., Bron, E.E., Niessen, W.J., et al.: Disease progression timeline estimation for Alzheimer’s disease using discriminative event based modeling. Neuroimage 186, 518–532 (2019)

    Article  Google Scholar 

  42. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  43. Schalkoff, R.J.: Artificial Neural Networks. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  44. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  45. Kononenko, I.: Semi-naive Bayesian Classifier. European Working Session on Learning, pp. 206–219. Springer, Berlin (1991)

    Google Scholar 

  46. Breheny, P.: Classification and regression trees (1984)

  47. Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M.A.A., et al.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  48. Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  49. Tiwari, M., Gupta, B., Shrivastava, M.: High-speed quantile-based histogram equalisation for brightness preservation and contrast enhancement. IET Image Process. 9(1), 80–89 (2014)

    Article  Google Scholar 

  50. Dhal, K.G., Das, S.: A dynamically adapted and weighted Bat algorithm in image enhancement domain. Evol. Syst. 10, 1–19 (2018)

    MATH  Google Scholar 

  51. Wongsritong, K., Kittayaruasiriwat, K., Cheevasuvit, F., Dejhan, K., Somboonkaew, A.: Contrast enhancement using multipeak histogram equalization with brightness preserving. In: IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No. 98EX242), pp. 455–458. IEEE, Chiangmai, Thailand (1998)

  52. Dhal, K.G., Das, A., Ghoshal, N., et al.: Variance based brightness preserved dynamic histogram equalization for image contrast enhancement. Pattern Recognit. Image Anal. 28(4), 747–757 (2018)

    Article  Google Scholar 

  53. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62C66 (1979)

    Article  Google Scholar 

  54. Gao, G., Wan, X., Yao, S., et al.: Reversible data hiding with contrast enhancement and tamper localization for medical images. Inf. Sci. 385, 250–265 (2017)

    Article  Google Scholar 

  55. Instruments, N.: Peak signal-to-noise ratio as an image quality metric (2013)

  56. Pai, P.Y., Chang, C.C., Chan, Y.K., et al.: An ROI-based medical image hiding method. Int. J. Innov. Comput. Inf. Control 1(8), 4521–4533 (2012)

    Google Scholar 

  57. Abbasi, R., Xu, L., Wang, Z., Chughtai, G.R., Amin, F., Luo, B.: Dynamic weighted histogram equalization for contrast enhancement using for Cancer Progression Detection in medical imaging. In: Proceedings of the 2018 International Conference on Signal Processing and Machine Learning, pp. 93–98. Shanghai, China (2018)

  58. Yan, C., Li, Z., Zhang, Y., Liu, Y., Ji, X., Zhang, Y.: Depth image denoising using nuclear norm and learning graph model. arXiv preprint arXiv:2008.03741 (2020)

  59. National Cancer Institute, National Biomedical Imaging Archive. http://imaging.nci.nih.gov

  60. Summers D.: Harvard whole brain atlas: www.med.harvard.edu/AANLIB/home.html, J. Neurol. Neurosurg. Psychiatry 74(3), 288–288 (2003)

  61. Liu, X., Lou, J., Fang, H., et al.: A novel robust reversible watermarking scheme for protecting authenticity and integrity of medical images. IEEE Access. 10(7), 76580–98 (2019)

    Article  Google Scholar 

  62. Swaraja, K., Meenakshi, K., Kora, P.: An optimized blind dual medical image watermarking framework for tamper localization and content authentication in secured telemedicine. Biomed. Signal Process. Control 1(550), 101665 (2020)

    Google Scholar 

  63. Memon, N.A., Alzahrani, A.: Prediction-based reversible watermarking of CT scan images for content authentication and copyright protection. IEEE Access. 21(8), 75448–62 (2020)

    Article  Google Scholar 

  64. Hayashi, Y., Tanaka, Y., Takagi, T., et al.: Recursive-rule extraction algorithm with J48graft and applications to generating credit scores. J. Artif. Intell. Soft Comput. Res. 6(1), 35–44 (2016)

    Article  Google Scholar 

  65. WEKA 3: Data Mining With Open Source Machine Learning Software in JAVA. http://www.cs.waikato.ac.nz/ml/weka/

  66. Longstaff, I.D., Cross, J.F.: A pattern recognition approach to understanding the multi-layer perception. Pattern Recognit. Lett. 5(5), 315–319 (1987)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Sichuan Science and Technology Program under Grant 2018RZ0070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Abbasi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Y. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, R., Chen, J., Al-Otaibi, Y. et al. RDH-based dynamic weighted histogram equalization using for secure transmission and cancer prediction. Multimedia Systems 27, 177–189 (2021). https://doi.org/10.1007/s00530-020-00718-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00718-w

Keywords

Navigation