Abstract
With the rapid development of Internet of Things technology, wireless sensor networks have been widely used in many places. This study mainly discusses the routing optimization strategy of the IoT perceptive layer based on the improved cat swarm algorithm. This study simulates a perceptive network with 100 nodes deployed randomly. As SDWSN for Internet of Things applications, in order to simulate the data transmission requirements of IoT communication and ensure the fairness of experimental comparison, this study uses the pseudo-random mechanism to generate the source address and destination address of data packets. A special SDN controller node is added to the network. The SDN controller node broadcasts information to each sensing node, and the common sensing node sends node information to the SDN controller. The SDN controller can survive the global time graph of the entire network according to the information of the common node. In order to avoid the problem of high energy consumption of cluster heads caused by long-distance data transmission, the cat algorithm protocol adopts multi-hop communication between cluster heads and BS and uses network overhead index to quantify link overhead as the basis for cluster heads to select the next hop node. When the inter-cluster multi-hop route is successfully established, the wireless sensor node begins to collect data and send it to BS node. Six monitoring nodes, two coordinators and one workstation were selected as the test objects. The data volume sent by each node was 2000, and the accuracy rate of test transmission information at different rates and transmission distances was determined. The group network coverage rate of cat swarm algorithm is always above 95%, and the average energy loss of nodes is the highest and less than 36%. The results show that the aggregate of energy consumption of cluster heads and the variance of energy consumption are the lowest in the improved cat cluster algorithm, which ensures the reliable transmission of node data.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shifa A, Asghar M, Fleury M (2016) Multimedia security perspectives in IoT. J Inf Secur Res 7(4):150–159
Chen CH, Lin MY, Liu CC (2018) Edge computing gateway of the industrial internet of things using multiple collaborative microcontrollers. IEEE Netw 32(1):24–32
Mishra AK, Tripathy AK, Puthal D et al (2019) Analytical model for sybil attack phases in internet of things. IEEE Internet Things J 6(1):379–387
Zhou J, Cao Z, Dong X et al (2017) Security and privacy for cloud-based IoT: challenges. IEEE Commun Mag 55(1):26–33
Centenaro M, Vangelista L, Zanella A et al (2016) Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wirel Commun 23(5):60–67
Ronen E, Shamir A, Weingarten AO et al (2018) IoT goes nuclear: creating a ZigBee chain reaction. IEEE Secur Priv 16(1):54–62
Gope P, Hwang T (2016) BSN-care: a secure IoT-based modern healthcare system using body sensor network. IEEE Sens J 16(5):1368–1376
Schulz P, Matthe M, Klessig H et al (2016) Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture. IEEE Commun Mag 55(2):70–78
Adi E, Anwar A, Baig Z et al (2020) Machine learning and data analytics for the IoT. Neural Comput Appl 32:16205–16233
Gozalvez J (2016) New 3GPP standard for IoT [mobile radio]. IEEE Veh Technol Mag 11(1):14–20
Qu T, Lei SP, Wang ZZ et al (2016) IoT-based real-time production logistics synchronization system under smart cloud manufacturing. Int J Adv Manuf Technol 84(1–4):147–164
Brogi A, Forti S (2017) QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J 4(5):1185–1192
Lin K, Chen M, Deng J et al (2016) Enhanced fingerprinting and trajectory prediction for IoT localization in smart buildings. IEEE Trans Autom Eng 13(3):1294–1307
Kolias C, Kambourakis G, Stavrou A et al (2017) DDoS in the IoT: Mirai and other botnets. Computer 50(7):80–84
Chiang M, Zhang T, Fog and IoT (2017) An overview of research opportunities. IEEE Internet Things J 3(6):854–864
Sinha RS, Wei Y, Hwang SH (2017) A survey on LPWA technology: LoRa and NB-IoT. Ict Express 3(1):14–21
Duan J, Gao D, Yang D et al (2017) An energy-aware trust derivation scheme with game theoretic approach in wireless sensor networks for IoT Applications. IEEE Internet Things J 1(1):58–69
Li H, Ota K, Dong M (2018) Learning IoT in edge: deep learning for the internet of things with edge computing. IEEE Netw 32(1):96–101
Minoli D, Sohraby K, Occhiogrosso B (2017) IoT considerations, requirements, and architectures for smart buildings—energy optimization and next-generation building management systems. IEEE Internet Things J 4(1):269–283
Xu Z, Cheng C, Sugumaran V (2020) Big data analytics of crime prevention and control based on image processing upon cloud computing. J Surveill Secur Saf 1:16–33
Cai H, Xu B, Jiang L et al (2017) IoT-based big data storage systems in cloud computing: perspectives and challenges. IEEE Internet Things J 4(1):75–87
Kong L, Khan MK, Wu F et al (2017) Millimeter-wave wireless communications for IoT-cloud supported autonomous vehicles: overview, design, and challenges. IEEE Commun Mag 55(1):62–68
Alletto S, Cucchiara R, Fiore GD et al (2016) An indoor location-aware system for an iot-based smart museum. IEEE Internet Things J 3(2):244–253
Song T, Li R, Mei B et al (2017) A privacy preserving communication protocol for IoT applications in smart homes. IEEE Internet Things J 4(6):1844–1852
Tewari A, Gupta BB (2017) Cryptanalysis of a novel ultra-lightweight mutual authentication protocol for IoT devices using RFID tags. J Supercomput 73(3):1–18
Perera C, Talagala DS, Liu CH et al (2016) Energy-efficient location and activity-aware on-demand mobile distributed sensing platform for sensing as a service in IoT clouds. IEEE Trans Comput Soc Syst 2(4):171–181
Gharbieh M, Elsawy H, Bader A et al (2017) Spatiotemporal stochastic modeling of IoT enabled cellular networks: scalability and stability analysis. IEEE Trans Commun 65(8):3585–3600
Verma S, Kawamoto Y, Fadlullah ZM et al (2017) A survey on network methodologies for real-time analytics of massive IoT data and open research issues. IEEE Commun Surv Tutor 19(3):1457–1477
Acknowledgements
This work was supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ4757)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest regarding the publication of the research article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xiao, X., Zhao, M. Routing optimization strategy of IoT awareness layer based on improved cat swarm algorithm. Neural Comput & Applic 34, 3311–3322 (2022). https://doi.org/10.1007/s00521-020-05590-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-020-05590-3