Abstract
Stochasticity, noisiness, and ergodicity are the key concepts behind many natural processes and its modeling is an important part of their implementation. There is a handful of soft-computing methods that are directly inspired by nature or stochastic natural processes. The implementation of such a nature-inspired optimization and search methods usually depends on streams of integer and floating point numbers generated in course of their execution. The pseudo-random numbers are utilized for in-silico emulation of probability-driven natural processes such as arbitrary modification of genetic information (mutation, crossover), partner selection, and survival of the fittest (selection, migration) and environmental effects (small random changes in motion direction and velocity). Deterministic chaos is a well known mathematical concept that can be used to generate sequences of seemingly random real numbers within selected interval in a predictable and well controllable way. In the past, it has been used as a basis for various pseudo-random number generators (PRNGs) with interesting properties. This work provides an empirical comparison of the behavior of selected nature-inspired optimization algorithms using different PRNGs and chaotic systems as sources of stochasticity.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Affenzeller M, Winkler S, Wagner S, Beham A (2009) Genetic algorithms and genetic programming: modern concepts and practical applications. Chapman and Hall/CRC, Boca Raton
Andrecut M (1998) Logistic map as a random number generator. Int J Modern Phys B 12(09):921–930. doi:10.1142/S021797929800051X. http://www.worldscientific.com/doi/abs/10.1142/S021797929800051X
Bastos-Filho CJA, Andrade J, Pita M, Ramos A (2009) Impact of the quality of random numbers generators on the performance of particle swarm optimization. In: IEEE international conference on systems, man and cybernetics. SMC 2009, pp 4988–4993 (2009). doi:10.1109/ICSMC.2009.5346366
Bastos-Filho CJA, Oliveira M, Nascimento DNO, Ramos AD (2010) Impact of the random number generator quality on particle swarm optimization algorithm running on graphic processor units. In: 2010 10th international conference on hybrid intelligent systems (HIS), pp 85–90. doi:10.1109/HIS.2010.5601073
Bland IM, Megson G (1996) Systolic random number generation for genetic algorithms. Electr Lett 32(12):1069–1070. doi:10.1049/el:19960709
Blum C, Merkle D (2008) Swarm intelligence: introduction and applications. Springer Publishing Company (incorporated)
Cantú-Paz E (2002) On random numbers and the performance of genetic algorithms. In: Proceedings of the genetic and evolutionary computation conference, GECCO ’02, Morgan Kaufmann Publishers Inc., San Francisco, pp 311–318. http://dl.acm.org/citation.cfm?id=646205.682957
Cárdenas-Montes M, Vega-Rodríguez MA, Gómez-Iglesias A (2011) Sensitiveness of evolutionary algorithms to the random number generator. In: Proceedings of the 10th international conference on adaptive and natural computing algorithms-volume part I, ICANNGA’11, Springer, Berlin, pp 371–380. http://dl.acm.org/citation.cfm?id=1997052.1997093
Chen SL, Hwang T, Lin WW (2010) Randomness enhancement using digitalized modified logistic map. IEEE transactions on circuits and systems II: express briefs 57(12):996–1000. doi:10.1109/TCSII.2010.2083170
Cheng MY, Huang KY, Chen HM (2012) Dynamic guiding particle swarm optimization with embedded chaotic search for solving multidimensional problems. Optim Lett 6(4):719–729 (2012). doi:10.1007/s11590-011-0297-z. http://dx.doi.org/10.1007/s11590-011-0297-z
Clerc M (2010) Particle swarm optimization. ISTE, Wiley. http://books.google.cz/books?id=Slee72idZ8EC
Czarn A, MacNish C, Vijayan K, Turlach BA (2004) Statistical exploratory analysis of genetic algorithms: the influence of gray codes upon the difficulty of a problem. In: Webb GI, Yu X (eds) Australian conference on artificial intelligence. Lecture notes in computer science, vol 3339. Springer, pp 1246–1252
Determan J, Foster J (1999) Using chaos in genetic algorithms. In: Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99. vol 3, p 2101. doi:10.1109/CEC.1999.785533
Engelbrecht A (2007) Computational intelligence: an introduction, 2nd edn. Wiley, New York
Gordon DM (2010) Ant encounters: interaction networks and colony behavior. Primers in complex systems. Princeton University Press, Princeton. http://books.google.com/books?id=MabwdXLZ9YMC
Hu W, Liang H, Peng C, Du B, Hu Q (2013) A hybrid chaos-particle swarm optimization algorithm for the vehicle routing problem with time window. Entropy 15(4):1247–1270. doi:10.3390/e15041247. http://www.mdpi.com/1099-4300/15/4/1247
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, 1995, vol 4, pp 1942–1948. doi:10.1109/ICNN.1995.488968
Lee CY, Yao X (2004) Evolutionary programming using mutations based on the levy probability distribution. IEEE Trans Evol Comput 8(1):1–13. doi:10.1109/TEVC.2003.816583
Li-Jiang Y, Tian-Lun C (2002) Application of chaos in genetic algorithms. Commun Theory Phys 38(2):168–172
Luscher M (1994) A portable high-quality random number generator for lattice field theory simulations. Comput Phys Commun 79(1): 100–110. doi:10.1016/0010-4655(94)90232-1. http://www.sciencedirect.com/science/article/pii/001046559490%2321
Ma Z, Vandenbosch G (2012) Impact of random number generators on the performance of particle swarm optimization in antenna design. In: 2012 6th European conference on antennas and propagation (EUCAP), pp 925–929. doi:10.1109/EuCAP.2012.6205998
Maheshkumar Y, Ravi V, Abraham A (2013) A particle swarm optimization-threshold accepting hybrid algorithm for unconstrained optimization. Neural Netw World 23(1):17–30
Masuda K, Kurihara K (2009) Particle swarm optimization with external chaotic noise. In: ICCAS-SICE, pp 5002–5007
Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8(1):3–30. doi:10.1145/272991.272995. http://doi.acm.org/10.1145/272991.272995
Maucher M, Schning U, Kestler H (2011) Search heuristics and the influence of non-perfect randomness: examining genetic algorithms and simulated annealing. Comput Stat 26(2):303–319. doi:10.1007/s00180-011-0237-5. http://dx.doi.org/10.1007/s00180-011-0237-5
Meysenburg MM, Foster JA (1997) The quality of pseudo-random number enerations and simple genetic algorithm performance. In: Bäck T (ed) ICGA. Morgan Kaufmann, Burlington, pp 276– 282
Meysenburg MM, Foster JA (1999) Randomness and GA performance, revisited. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Proceedings of the genetic and evolutionary computation conference, vol 1. Morgan Kaufmann, Orlando, pp. 425–432. http://www.cs.uidaho.edu/foster/pub/foster/papers/prng-icga99.pdf
Meysenburg MM, Hoelting D, McElvain D, Foster JA (2002) How random generator quality impacts ga performance. In: Langdon WB, Cantú-Paz E, Mathias KE, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz AC, Miller JF, Burke EK, Jonoska N (eds) GECCO. Morgan Kaufmann, Burlington, pp 480–487
Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge
Persohn K, Povinelli R (2012) Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos Solitons Fractals 45(3):238–245. doi:10.1016/j.chaos.2011.12.006. http://www.sciencedirect.com/science/article/pii/S0960077911002384
Poláková R, Tvrdík J (2013) A combined approach to adaptive differential evolution. Neural Netw World 23(1):3–15
Price KV, Storn RM, Lampinen JA (2005) Differential evolution a practical approach to global optimization. Natural Computing Series. Springer, Berlin. http://www.springer.com/west/home/computer/foundations?SGWID=4-156-22-32104365-0&teaserId=68063&CENTER_ID=69103
Sabeti M, Boostani R, Zoughi T (2012) Using genetic programming to select the informative eeg-based features to distinguish schizophrenic patients. Neural Netw World 22(1):3–20
Schuster H, Just W (2006) Deterministic chaos. Wiley. http://books.google.cz/books?id=9y2qSGpQR7QC
Shastry MC, Nagaraj N, Vaidya PG (2006) The b-exponential map: a generalization of the logistic map, and its applications in generating pseudo-random numbers. CoRR abs/cs/0607069
Storn R (1996) Differential evolution design of an IIR-filter. In: Proceeding of the IEEE conference on evolutionary computation ICEC. IEEE Press, Piscataway. pp 268–273
Storn R, Price K (1995) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. rep. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.9696
Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real parameter optimization. Tech rep, Nanyang Technological University
Szczepański J, Kotulski Z (2001) Pseudorandom number generators based on chaotic dynamical systems. Open Syst Inf Dyn 8(2):137–146. doi:10.1023/A:1011950531970. http://dx.doi.org/10.1023/A:1011950531970
Tirronen V, Ayramo S, Weber M (2011) Study on the effects of pseudorandom generation quality on the performance of differential evolution. In: Dobnikar A, Lotri U, Ster B (eds) Adaptive and natural computing algorithms. Lecture notes in computer science, vol 6593. Springer, Berlin, pp 361–370. doi:10.1007/978-3-642-20282-_37. http://dx.doi.org/10.1007/978-3-642-20282-7_37
Wagner NR (1993) The logistic lattice in random number generation. In: Proceedings of the thirtieth annual allerton conference on communications, control, and computing. Coordinated Science Lab and Department of Electrical and Computer Engineering, University of Illinois at Urbabn-Champaign, pp 922–931
Wu AS, Lindsay RK, Riolo R (1997) Empirical observations on the roles of crossover and mutation. In: Bäck T (ed) Proceedings of the seventh international conference on genetic algorithms. Morgan Kaufmann, San Francisco, pp 362–369. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.9473
Yang M, Guan J, Cai Z, Wang L (2010) Self-adapting differential evolution algorithm with chaos random for global numerical optimization. In: Proceedings of the 5th international conference on advances in computation and intelligence, ISICA’10. Springer, Berlin, pp 112–122. http://dl.acm.org/citation.cfm?id=1926680.1926694
Yao JB, Yao BZ, Li L, Jiang YL (2012) Hybrid model for displacement prediction of tunnel surrounding rock. Neural Netw World 22(3):263–275
Zhang S, Hu Q, Wang X, Zhu Z (2009) Application of chaos genetic algorithm to transformer optimal design. In: International workshop on chaos-fractals theories and applications, 2009. IWCFTA ’09, pp 108–111. doi:10.1109/IWCFTA.2009.30
Zhao S, Xu G, Tao T, Liang L (2009) Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks. Computers and mathematics with applications 57(11–12):2009–2015. doi:10.1016/j.camwa.2008.10.048. http://www.sciencedirect.com/science/article/pii/S089812210800518X. In: Proceedings of the international conference on bio-inspired computing-theories and applications BIC-TA 2007 Zhengzhou
Acknowledgments
This work was supported by the European Regional Development Fund in the IT4-Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), by the Bio-Inspired Methods: research, development and knowledge transfer project, Reg. No. CZ.1.07/2.3.00/20.0073, and by the Development of human resources in research and development of latest soft computing methods and their application in practice project, Reg. No. CZ.1.07/2.3.00/20.0072 funded by Operational Programme Education for Competitiveness, co-financed by ESF and state budget of the Czech Republic. The following grant is also acknowledged for the financial support provided for this research: Grant Agency of the Czech Republic-GACR P103/13/08195S. The work was also partially supported by Grants of SGS No. SP2013/70 and No. SP2013/114, VŠB-Technical University of Ostrava.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by I. Zelinka.
Rights and permissions
About this article
Cite this article
Krömer, P., Zelinka, I. & Snášel, V. Behaviour of pseudo-random and chaotic sources of stochasticity in nature-inspired optimization methods. Soft Comput 18, 619–629 (2014). https://doi.org/10.1007/s00500-014-1223-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-014-1223-y