iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00453-011-9554-X
Algorithmic Meta-theorems for Restrictions of Treewidth | Algorithmica Skip to main content
Log in

Algorithmic Meta-theorems for Restrictions of Treewidth

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Possibly the most famous algorithmic meta-theorem is Courcelle’s theorem, which states that all MSO-expressible graph properties are decidable in linear time for graphs of bounded treewidth. Unfortunately, the running time’s dependence on the formula describing the problem is in general a tower of exponentials of unbounded height, and there exist lower bounds proving that this cannot be improved even if we restrict ourselves to deciding FO logic on trees.

We investigate whether this parameter dependence can be improved by focusing on two proper subclasses of the class of bounded treewidth graphs: graphs of bounded vertex cover and graphs of bounded max-leaf number. We prove stronger algorithmic meta-theorems for these more restricted classes of graphs. More specifically, we show it is possible to decide any FO property in both of these classes with a singly exponential parameter dependence and that it is possible to decide MSO logic on graphs of bounded vertex cover with a doubly exponential parameter dependence. We also prove lower bound results which show that our upper bounds cannot be improved significantly, under widely believed complexity assumptions. Our work addresses an open problem posed by Michael Fellows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H., Fomin, F., Lokshtanov, D., Penninkx, S.S.E., Thilikos, D.: (Meta) kernelization. In: FOCS (2009)

    Google Scholar 

  3. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex cover. In: Kralovic, R., Urzyczyn, P. (eds.) MFCS. Lecture Notes in Computer Science, vol. 4162, pp. 238–249. Springer, Berlin (2006)

    Google Scholar 

  4. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Linear FPT reductions and computational lower bounds. In: Babai, L. (ed.) STOC, pp. 212–221. ACM, New York (2004)

    Google Scholar 

  5. Cosmadakis, S.S., Papadimitriou, C.H.: The traveling salesman problem with many visits to few cities. SIAM J. Comput. 13, 99 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Approximation schemes for first-order definable optimisation problems. In: LICS, pp. 411–420. IEEE Comput. Soc., Los Alamitos (2006)

    Google Scholar 

  9. Demaine, E.D., Hajiaghayi, M.T.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)

    Article  Google Scholar 

  10. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time extremal structure I. In: Broersma, H., Johnson, M., Szeider, S. (eds.) ACiD. Texts in Algorithmics, vol. 4, pp. 1–41. King’s College, London (2005)

    Google Scholar 

  11. Fellows, M.R.: Open problems in parameterized complexity. In: AGAPE Spring School on Fixed Parameter and Exact Algorithms (2009)

    Google Scholar 

  12. Fellows, M.R., Rosamond, F.A.: The complexity ecology of parameters: an illustration using bounded max leaf number. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE. Lecture Notes in Computer Science, vol. 4497, pp. 268–277. Springer, Berlin (2007)

    Google Scholar 

  13. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC. Lecture Notes in Computer Science, vol. 5369, pp. 294–305. Springer, Berlin (2008)

    Google Scholar 

  14. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh, S.: The complexity ecology of parameters: an illustration using bounded max leaf number. Theory Comput. Syst. 45(4), 822–848 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the price of generality. In: Mathieu, C. (ed.) SODA, pp. 825–834. SIAM, Philadelphia (2009)

    Google Scholar 

  16. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48(6), 1184–1206 (2001)

    MathSciNet  Google Scholar 

  18. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Log. 130(1–3), 3–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grohe, M.: Logic, graphs, and algorithms. Electron. Colloq. Comput. Complex. (ECCC) 14(091) (2007)

  20. Hlinený, P., Oum, S.-i., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008)

    Article  Google Scholar 

  21. Immerman, N.: Descriptive Complexity. Springer, Berlin (1999)

    MATH  Google Scholar 

  22. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discrete Math. 4, 99 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized intractability of monadic second order logic. In: SODA (2010)

    Google Scholar 

  24. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 538–548 (1983)

  25. Robertson, N., Seymour, P.D.: Graph minors. I–XXIII. J. Comb. Theory, Ser. B (1983–2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lampis.

Additional information

A preliminary version of this paper appeared in ESA 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lampis, M. Algorithmic Meta-theorems for Restrictions of Treewidth. Algorithmica 64, 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9554-x

Keywords

Navigation