Abstract
Possibly the most famous algorithmic meta-theorem is Courcelle’s theorem, which states that all MSO-expressible graph properties are decidable in linear time for graphs of bounded treewidth. Unfortunately, the running time’s dependence on the formula describing the problem is in general a tower of exponentials of unbounded height, and there exist lower bounds proving that this cannot be improved even if we restrict ourselves to deciding FO logic on trees.
We investigate whether this parameter dependence can be improved by focusing on two proper subclasses of the class of bounded treewidth graphs: graphs of bounded vertex cover and graphs of bounded max-leaf number. We prove stronger algorithmic meta-theorems for these more restricted classes of graphs. More specifically, we show it is possible to decide any FO property in both of these classes with a singly exponential parameter dependence and that it is possible to decide MSO logic on graphs of bounded vertex cover with a doubly exponential parameter dependence. We also prove lower bound results which show that our upper bounds cannot be improved significantly, under widely believed complexity assumptions. Our work addresses an open problem posed by Michael Fellows.
Similar content being viewed by others
References
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)
Bodlaender, H., Fomin, F., Lokshtanov, D., Penninkx, S.S.E., Thilikos, D.: (Meta) kernelization. In: FOCS (2009)
Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex cover. In: Kralovic, R., Urzyczyn, P. (eds.) MFCS. Lecture Notes in Computer Science, vol. 4162, pp. 238–249. Springer, Berlin (2006)
Chen, J., Huang, X., Kanj, I.A., Xia, G.: Linear FPT reductions and computational lower bounds. In: Babai, L. (ed.) STOC, pp. 212–221. ACM, New York (2004)
Cosmadakis, S.S., Papadimitriou, C.H.: The traveling salesman problem with many visits to few cities. SIAM J. Comput. 13, 99 (1984)
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)
Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Approximation schemes for first-order definable optimisation problems. In: LICS, pp. 411–420. IEEE Comput. Soc., Los Alamitos (2006)
Demaine, E.D., Hajiaghayi, M.T.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)
Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time extremal structure I. In: Broersma, H., Johnson, M., Szeider, S. (eds.) ACiD. Texts in Algorithmics, vol. 4, pp. 1–41. King’s College, London (2005)
Fellows, M.R.: Open problems in parameterized complexity. In: AGAPE Spring School on Fixed Parameter and Exact Algorithms (2009)
Fellows, M.R., Rosamond, F.A.: The complexity ecology of parameters: an illustration using bounded max leaf number. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE. Lecture Notes in Computer Science, vol. 4497, pp. 268–277. Springer, Berlin (2007)
Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC. Lecture Notes in Computer Science, vol. 5369, pp. 294–305. Springer, Berlin (2008)
Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh, S.: The complexity ecology of parameters: an illustration using bounded max leaf number. Theory Comput. Syst. 45(4), 822–848 (2009)
Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the price of generality. In: Mathieu, C. (ed.) SODA, pp. 825–834. SIAM, Philadelphia (2009)
Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)
Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48(6), 1184–1206 (2001)
Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Log. 130(1–3), 3–31 (2004)
Grohe, M.: Logic, graphs, and algorithms. Electron. Colloq. Comput. Complex. (ECCC) 14(091) (2007)
Hlinený, P., Oum, S.-i., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008)
Immerman, N.: Descriptive Complexity. Springer, Berlin (1999)
Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discrete Math. 4, 99 (1991)
Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized intractability of monadic second order logic. In: SODA (2010)
Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 538–548 (1983)
Robertson, N., Seymour, P.D.: Graph minors. I–XXIII. J. Comb. Theory, Ser. B (1983–2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
A preliminary version of this paper appeared in ESA 2010.
Rights and permissions
About this article
Cite this article
Lampis, M. Algorithmic Meta-theorems for Restrictions of Treewidth. Algorithmica 64, 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-011-9554-x