iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00373-013-1383-Z
The Minimal Number of Subtrees with a Given Degree Sequence | Graphs and Combinatorics Skip to main content
Log in

The Minimal Number of Subtrees with a Given Degree Sequence

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the structures of extremal trees which have the minimal number of subtrees in the set of all trees with a given degree sequence. In particular, the extremal trees must be caterpillar and but in general not unique. Moreover, all extremal trees with a given degree sequence \({\pi = (d_1, \ldots, d_{5}, 1, \ldots, 1)}\) have been characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agra A., Gouveia L., Requejo C.: Extended formulations for the cardinality constrained subtree of a tree problem. Oper. Res. Lett. 37, 192–196 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bondy J.A., Murty U.S.R.: Graph theory with applications. Macmillan Press, New York (1976)

    MATH  Google Scholar 

  3. Çela E., Schmuck N.S., Wimer S., Woeginger G.J.: The Wiener maximum quadratic assignment problem. Discrete Optim. 8, 411–416 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eisenstat D., Gordon G.: Non-isomorphic caterpillars with identical subtree data. Discrete Math. 306, 827–830 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Heuberger C., Prodinger H.: On α-greedy expansions of numbers. Adv. Appl Math. 38, 505–525 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kirk R., Wang H.: Largest number of subtrees of trees with a given maximum degree. SIAM J. Discrete Math. 22, 985–995 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Knudsen, B.: Optimal multiple parsimony alignment with affine gap cost using a phylogenetic tree. In: Lecture Notes in Bioinformatics, vol. 2812, pp. 433–446. Springer, Berlin (2003)

  8. Meir A., Moon J.W.: On subtrees of certain families of rooted trees. Ars. Combin. 16, 305–318 (1983)

    MathSciNet  Google Scholar 

  9. Shi R.: The average distance of trees. Syst. Sci. Math. Sci. 6(1), 18–24 (1993)

    MATH  Google Scholar 

  10. Székely L.A., Wang H.: On subtrees of trees. Adv. Appl. Math. 34, 138–155 (2005)

    Article  MATH  Google Scholar 

  11. Székely L.A., Wang H.: Binary trees with the largest number of subtrees with at least one leaf. Congr Numer. 177, 147–169 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Székely L.A., Wang H.: Binary trees with the largest number of subtrees. Discrete Appl. Math. 155, 374–385 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Székely L.A., Wang H., Wu T.Y.: The sum of the distances between the leaves of a tree and the “semi-regular” property. Discrete Math. 311, 1197–1203 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Vince A., Wang H.: The average order of a subtree of a tree. J. Combin. Theory Ser. B. 100, 161–170 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wagner S.G.: Correlation of graph-theoretical indeces. SIAM J. Discrete Math. 21, 33–46 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wang H.: The extremal values of the Wiener index of a tree with given degree sequence. Discrete Appl Math. 156, 2647–2654 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wiener H.: Structural determination of paraffin boiling poiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

  18. Yan W.G., Yeh Y.N.: Enumeration of subtrees of trees. Theoret. Comput. Sci. 369, 256–268 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang X.D., Xiang Q.Y., Xu L.Q., Pan R.Y.: The Wiener Index of trees with given degree sequences. MATCH Commun. Math. Comput. Chem. 60, 623–644 (2008)

    MATH  MathSciNet  Google Scholar 

  20. Zhang X.D., Liu Y., Han M.X.: Maximum Wiener index of trees with given degree sequence. MATCH Commun. Math. Comput. Chem. 64, 661–682 (2010)

    MATH  MathSciNet  Google Scholar 

  21. Zhang X.M., Zhang X.D., Gray D., Wang H.: Trees with the most subtrees—an algorithmic approach. J. Combin. 3(2), 207–223 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, X.M., Zhang, X.D., Gray, D., Wang H.: The number of subtrees with given degree sequence. J. Graph Theory 73, 280–295 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Zhang.

Additional information

This work is supported by the National Natural Science Foundation of China (No.11271256), Innovation Program of Shanghai Municipal Education Commission (No.14ZZ016), Specialized Research Fund for the Doctoral Program of Higher Education (No.20130073110075), and the Research Foundation for important professional in voluntary university (No:Z-2204-11092).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XM., Zhang, XD. The Minimal Number of Subtrees with a Given Degree Sequence. Graphs and Combinatorics 31, 309–318 (2015). https://doi.org/10.1007/s00373-013-1383-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-013-1383-z

Keywords

Mathematics Subject Classification (2000)

Navigation