iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00371-019-01772-W
A new TLD target tracking method based on improved correlation filter and adaptive scale | The Visual Computer Skip to main content
Log in

A new TLD target tracking method based on improved correlation filter and adaptive scale

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Target tracking is a popular but challenging problem in computer vision field. Due to many disturbing factors such as position transformation, illumination, and occlusion, it is difficult to achieve continuous target tracking. On the basis of the above analyses, a novel target tracking method based on correlation filters is proposed in this paper. This method uses the improved Tracking–Learning–Detection (TLD) tracking framework which combines the tracker with the detector through the learning mechanism. In the TLD tracking framework, the Spatially Regularized Discriminatively Correlation Filters tracker is used and improved. In addition, the adaptive tracking scale is realized according to the confidence of the searching area. The experimental results show that the proposed algorithm can effectively deal with the attitude change and the illumination problem so that it has better robustness and stability for target continuous tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hong, S., Wang, L., Shi, Z.G., et al.: Simplified particle PHD filter for multiple-target tracking: algorithm and architecture[J]. Prog. Electromagn. Res. 120, 481–498 (2011)

    Article  Google Scholar 

  2. Denman, S., Chandran, V., Sridharan, S.: An adaptive optical flow technique for person tracking systems [J]. Pattern Recogn. Lett. 28(10), 1232–1239 (2007)

    Article  Google Scholar 

  3. Mahmoudi, S.A., Kierzynka, M., Manneback, P., et al.: Real-time motion tracking using optical flow on multiple GPUs[J]. Bull. Pol. Acad. Sci. Tech. Sci. 62(1), 139–150 (2014)

    Google Scholar 

  4. Zhao, Y., Pei, H., Liu, B.: Meanshift algorithm based on kernel bandwidth adaptive adjust. In: 32nd Chinese Control Conference (CCC), pp. 4486–4490 (2013)

  5. Vojir, T., Noskova, J., Matas, J.: Robust scale-adaptive mean-shift for tracking [J]. Pattern Recogn. Lett. 49(C), 250–258 (2014)

    Article  Google Scholar 

  6. Hu, W., Gao, J., Wang, Y., et al.: Online adaboost-based parameterized methods for dynamic distributed network intrusion detection[J]. IEEE Trans. Cybern. 44(1), 66–82 (2014)

    Article  Google Scholar 

  7. Kalal, Z., Matas, J., Mikolajczyk, K.: Online learning of robust object detectors during unstable tracking[C]. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops). IEEE, pp. 1417–1424 (2009)

  8. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking–learning–detection[M]. IEEE Comput. Soc. 34, 1409–1422 (2012)

    Google Scholar 

  9. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures[C]. In: 2010 20th International Conference on Pattern Recognition (ICPR), IEEE, pp. 2756–2759 (2010)

  10. Kalal, Z., Mikolajczyk, K., Matas, J.: Face-tld: tracking–learning–detection applied to faces[C]. In: 2010 17th IEEE International Conference on Image Processing (ICIP), IEEE, pp. 3789–3792 (2010)

  11. Bolme, D.S., Beveridge, J.R., Draper, B.A., et al.: Visual object tracking using adaptive correlation filters[C]. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 2544–2550 (2010)

  12. Henriques, J.F., Caseiro, R., Martins, P., et al.: Exploiting the circulant structure of tracking-by-detection with kernels[C]. In: European Conference on Computer Vision, pp. 702–715. Springer, Berlin, Heidelberg (2012)

  13. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters[J]. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  14. Danelljan, M., Häger, G., Khan, F., et al.: Accurate scale estimation for robust visual tracking[C]. In: British Machine Vision Conference, Nottingham, September 1–5, BMVA Press (2014)

  15. Danelljan, M., Hager, G., Shahbaz Khan, F., et al.: Learning spatially regularized correlation filters for visual tracking[C]. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4310–4318 (2015)

  16. Zhang, H., Liu, G.: Coupled-layer based visual tracking via adaptive kernelized correlation filters [J]. Vis. Comput. 34(1), 41–54 (2018)

    Article  MathSciNet  Google Scholar 

  17. Zhang, T., Liu, S., Xu, C., et al.: Correlation particle filter for visual tracking[J]. IEEE Trans. Image Process. 27(99), 2676–2687 (2018)

    Article  MathSciNet  Google Scholar 

  18. Valmadre, J., Bertinetto, L., Henriques, J., et al.: End-to-end representation learning for correlation filter based tracking[C]. In: Computer Vision and Pattern Recognition. IEEE, pp. 5000–5008 (2017)

  19. Zhang, D., Zhang, Z., Zou, L., et al.: Part-based visual tracking with spatially regularized correlation filters[J]. Vis. Comput. 2019(4)

  20. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2411–2418 (2013)

  21. Wu, Y., Lim, J., Yang, M.-H.: Object tracking benchmark. In: PAMI (2015)

  22. Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J.: The visual object tracking VOT2014 challenge results. In: Proceedings of European Conference on Computer Vision Workshop Visual Object Tracking Challenge, pp. 191–217 (2014)

  23. Jia, X., Lu, H., Yang, M.-H.: Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of IEEE Conference Computing

  24. Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with kernels. In: Proceedings of International Conference on Computing Vision, pp. 263–270 (2011)

  25. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: Proceedings of IEEE Conference Computing

  26. Kalal, Z., Matas, J., Mikolajczyk, K.: P-N learning: Bootstrapping binary classifiers by structural constraints. In: Proceedings of IEEE Conference Computing Vision Pattern Recognition, pp. 49–56 (2010)

  27. Zhong, W., Lu, H., Yang, M.-H.: Robust object tracking via sparsity-based collaborative model. In: Proceedings of IEEE Conference Computing Vision Pattern Recognition, pp. 1838–1845 (2012)

  28. Henriques, J., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  29. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Proceedings of European Conference on Computer Vision Workshop Visual Object Tracking Challenge, pp. 254–265 (2014)

  30. Danelljan, M., Hager, G., Khan, F.S., et al.: Discriminative scale space tracking [J]. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)

    Article  Google Scholar 

  31. Danelljan, M., Khan, F.S., Felsberg, M., van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: CVPR (2014)

  32. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection[C]. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, pp. 886–893 (2005)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (61573182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhu, S., Xia, S. et al. A new TLD target tracking method based on improved correlation filter and adaptive scale. Vis Comput 36, 1783–1795 (2020). https://doi.org/10.1007/s00371-019-01772-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01772-w

Keywords

Navigation