Abstract
Target tracking is a popular but challenging problem in computer vision field. Due to many disturbing factors such as position transformation, illumination, and occlusion, it is difficult to achieve continuous target tracking. On the basis of the above analyses, a novel target tracking method based on correlation filters is proposed in this paper. This method uses the improved Tracking–Learning–Detection (TLD) tracking framework which combines the tracker with the detector through the learning mechanism. In the TLD tracking framework, the Spatially Regularized Discriminatively Correlation Filters tracker is used and improved. In addition, the adaptive tracking scale is realized according to the confidence of the searching area. The experimental results show that the proposed algorithm can effectively deal with the attitude change and the illumination problem so that it has better robustness and stability for target continuous tracking.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hong, S., Wang, L., Shi, Z.G., et al.: Simplified particle PHD filter for multiple-target tracking: algorithm and architecture[J]. Prog. Electromagn. Res. 120, 481–498 (2011)
Denman, S., Chandran, V., Sridharan, S.: An adaptive optical flow technique for person tracking systems [J]. Pattern Recogn. Lett. 28(10), 1232–1239 (2007)
Mahmoudi, S.A., Kierzynka, M., Manneback, P., et al.: Real-time motion tracking using optical flow on multiple GPUs[J]. Bull. Pol. Acad. Sci. Tech. Sci. 62(1), 139–150 (2014)
Zhao, Y., Pei, H., Liu, B.: Meanshift algorithm based on kernel bandwidth adaptive adjust. In: 32nd Chinese Control Conference (CCC), pp. 4486–4490 (2013)
Vojir, T., Noskova, J., Matas, J.: Robust scale-adaptive mean-shift for tracking [J]. Pattern Recogn. Lett. 49(C), 250–258 (2014)
Hu, W., Gao, J., Wang, Y., et al.: Online adaboost-based parameterized methods for dynamic distributed network intrusion detection[J]. IEEE Trans. Cybern. 44(1), 66–82 (2014)
Kalal, Z., Matas, J., Mikolajczyk, K.: Online learning of robust object detectors during unstable tracking[C]. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops). IEEE, pp. 1417–1424 (2009)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking–learning–detection[M]. IEEE Comput. Soc. 34, 1409–1422 (2012)
Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures[C]. In: 2010 20th International Conference on Pattern Recognition (ICPR), IEEE, pp. 2756–2759 (2010)
Kalal, Z., Mikolajczyk, K., Matas, J.: Face-tld: tracking–learning–detection applied to faces[C]. In: 2010 17th IEEE International Conference on Image Processing (ICIP), IEEE, pp. 3789–3792 (2010)
Bolme, D.S., Beveridge, J.R., Draper, B.A., et al.: Visual object tracking using adaptive correlation filters[C]. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 2544–2550 (2010)
Henriques, J.F., Caseiro, R., Martins, P., et al.: Exploiting the circulant structure of tracking-by-detection with kernels[C]. In: European Conference on Computer Vision, pp. 702–715. Springer, Berlin, Heidelberg (2012)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters[J]. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)
Danelljan, M., Häger, G., Khan, F., et al.: Accurate scale estimation for robust visual tracking[C]. In: British Machine Vision Conference, Nottingham, September 1–5, BMVA Press (2014)
Danelljan, M., Hager, G., Shahbaz Khan, F., et al.: Learning spatially regularized correlation filters for visual tracking[C]. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4310–4318 (2015)
Zhang, H., Liu, G.: Coupled-layer based visual tracking via adaptive kernelized correlation filters [J]. Vis. Comput. 34(1), 41–54 (2018)
Zhang, T., Liu, S., Xu, C., et al.: Correlation particle filter for visual tracking[J]. IEEE Trans. Image Process. 27(99), 2676–2687 (2018)
Valmadre, J., Bertinetto, L., Henriques, J., et al.: End-to-end representation learning for correlation filter based tracking[C]. In: Computer Vision and Pattern Recognition. IEEE, pp. 5000–5008 (2017)
Zhang, D., Zhang, Z., Zou, L., et al.: Part-based visual tracking with spatially regularized correlation filters[J]. Vis. Comput. 2019(4)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2411–2418 (2013)
Wu, Y., Lim, J., Yang, M.-H.: Object tracking benchmark. In: PAMI (2015)
Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J.: The visual object tracking VOT2014 challenge results. In: Proceedings of European Conference on Computer Vision Workshop Visual Object Tracking Challenge, pp. 191–217 (2014)
Jia, X., Lu, H., Yang, M.-H.: Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of IEEE Conference Computing
Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with kernels. In: Proceedings of International Conference on Computing Vision, pp. 263–270 (2011)
Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: Proceedings of IEEE Conference Computing
Kalal, Z., Matas, J., Mikolajczyk, K.: P-N learning: Bootstrapping binary classifiers by structural constraints. In: Proceedings of IEEE Conference Computing Vision Pattern Recognition, pp. 49–56 (2010)
Zhong, W., Lu, H., Yang, M.-H.: Robust object tracking via sparsity-based collaborative model. In: Proceedings of IEEE Conference Computing Vision Pattern Recognition, pp. 1838–1845 (2012)
Henriques, J., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)
Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Proceedings of European Conference on Computer Vision Workshop Visual Object Tracking Challenge, pp. 254–265 (2014)
Danelljan, M., Hager, G., Khan, F.S., et al.: Discriminative scale space tracking [J]. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)
Danelljan, M., Khan, F.S., Felsberg, M., van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: CVPR (2014)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection[C]. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, pp. 886–893 (2005)
Acknowledgements
This research was supported by the National Natural Science Foundation of China (61573182).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, X., Zhu, S., Xia, S. et al. A new TLD target tracking method based on improved correlation filter and adaptive scale. Vis Comput 36, 1783–1795 (2020). https://doi.org/10.1007/s00371-019-01772-w
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-019-01772-w