iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00371-019-01672-Z
A lightweight methodology of 3D printed objects utilizing multi-scale porous structures | The Visual Computer Skip to main content

Advertisement

Log in

A lightweight methodology of 3D printed objects utilizing multi-scale porous structures

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Lightweight modeling is one of the most important research subjects in modern fabrication manufacturing, and it provides not only a low-cost solution but also functional applications, especially for the fabrication using 3D printing. This approach presents a multi-scale porous structure-based lightweight framework to reduce the weight of 3D printed objects while meeting the specified requirements. Specifically, the triply periodic minimal surface (TPMS) is exploited to design a multi-scale porous structure, which can achieve high mechanical behaviors with lightweight. The multi-scale porous structure is constructed using compactly supported radial basis functions, and it inherits the good properties of TPMS, such as smoothness, full connectivity (no closed hollows) and quasi-self-supporting (free of extra supports in most cases). Then, the lightweight problem utilizing the porous structures is formulated into a constrained optimization. Finally, a strength-to-weight optimization method is proposed to obtain the lightweight models. It is also worth noting that the proposed porous structures can be perfectly fabricated by common 3D printing technologies on account of the leftover material, such as the liquid in SLA, which can be removed through the fully connected void channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Stava, O., Vanek, J., Benes, B., Carr, N., Měch, R.: Stress relief: improving structural strength of 3D printable objects. ACM Trans. Gr. 31(4), 48:1–48:11 (2012)

    Article  Google Scholar 

  2. Lin, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Changhe, T., Cohen-Or, D., Chen, B.: Build-to-last: strength to weight 3d printed objects. ACM Trans. Gr. 33(4), 97:1–97:10 (2014)

    MATH  Google Scholar 

  3. Wang, W., Wang, T., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., Liu, X.: Cost-effective printing of 3d objects with skin-frame structures. ACM Trans. Gr. 32(6), 177:1–177:10 (2013)

    Google Scholar 

  4. Zhang, X., Xia, Y., Wang, J., Yang, Z., Changhe, T., Wang, W.: Medial axis tree–an internal supporting structure for 3d printing. Comput. Aided Geom. Des. 35–36, 149–162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Melchels, F.P.W., Bertoldi, K., Gabbrielli, R., Velders, A.H., Feijen, J., Grijpma, D.W.: Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27), 6909–6916 (2010)

    Article  Google Scholar 

  6. Rajagopalan, S., Robb, R.A.: Schwarz meets Schwann: design and fabrication of biomorphic tissue engineering scaffolds. Med. Image Comput. Comput.-Assist. Interv. 8, 794–801 (2005)

    Google Scholar 

  7. Yoo, D.J.: Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions. Med. Eng. Phys. 34(5), 625–639 (2012)

    Article  Google Scholar 

  8. SHAPEWAYS. Tutorial: How to hollow objects for 3D printing. http://www.shapeways.com/tutorials/creating-hollow-objects.html

  9. Rosen, D., Johnston, S., Reed, M.: Design of general lattice structures for lightweight and compliance applications. In: Rapid Manufacturing Conference, pp. 1–14 (2006)

  10. Wang, H., Chen, Y., Rosen, D.W.: A hybrid geometric modeling method for large scale conformal cellular structures. In: ASME Computers and Information in Engineering Conference, Long Beach, CA, Sept, pp. 24–28 (2005)

  11. Wang, T., Liu, Y., Liu, X.: Global stiffness structural optimization for 3D printing under unknown loads. J. Comput. Gr. Tech. 5(3), 18–38 (2016)

    Google Scholar 

  12. Attene, M., Livesu, M., Lefebvre, S., Funkhouser, T.: Design, representations, and processing for additive manufacturing. Synth. Lect. Vis. Comput. Comput. Gr. Anim. Comput. Photogr. Imaging 10, 1–146 (2018)

    Google Scholar 

  13. Martínez, J., Song, H., Dumas, J., De Lorraine, U., Lefebvre, S., De Lorraine, U.: Orthotropic k-nearest foams for additive manufacturing. ACM Trans. Gr. 36(4), 1–12 (2017)

    Article  Google Scholar 

  14. Hollister, S.J., Mater, N.: Porous scaffold design for tissue. Nat. Mater. 4, 518–524 (2005)

    Article  Google Scholar 

  15. Hutmacher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000)

    Article  Google Scholar 

  16. Schroeder, C., Regli, W.C., Shokoufandeh, A., Sun, W.: Computer-aided design of porous artifacts. Comput. Aided Des. 37, 339–353 (2005)

    Article  Google Scholar 

  17. Fryazinov, O., Vilbrandt, T., Pasko, A.: Multi-scale space-variant FRep cellular structures. Comput. Aided Des. 45(1), 26–34 (2013)

    Article  MathSciNet  Google Scholar 

  18. Feng, J., Jianzhong, F., Lin, Z., Shang, C., Li, B.: A review of the design methods of complex topology structures for 3d printing. Vis. Comput. Ind. Biomed. Art 1(1), 1–16 (2018)

    Article  Google Scholar 

  19. Wang, Y.: Periodic surface modeling for computer aided nano design. Comput. Aided Des. 39, 179–189 (2007)

    Article  Google Scholar 

  20. Yang, N., Zhou, K.: Effective method for multi-scale gradient porous scaffold design and fabrication. Mater. Sci. Eng. C 43, 502–505 (2014)

    Article  Google Scholar 

  21. Li, D., Dai, N., Jiang, X., Chen, X.: Interior structural optimization based on the density-variable shape modeling of 3d printed objects. Int. J. Adv. Manuf. Technol. 83, 1627–1635 (2015)

    Article  Google Scholar 

  22. Savio, G., Meneghello, R., Concheri, G.: Design of variable thickness triply periodic surfaces for additive manufacturing. Prog. Addit. Manuf. (2019). https://doi.org/10.1007/s40964-019-00073-x

    Google Scholar 

  23. Cvijovi, D., Klinowski, J.: The t and clp families of triply periodic minimal surfaces. J. Phys. I(2), 137–147 (1992)

    Google Scholar 

  24. Restrepo, S., Ocampo, S., Ramírez-Romero, J.L.: Mechanical properties of ceramic structures based on triply periodic minimal surface (tpms) processed by 3d printing. J. Phys. Conf. Ser. 935(1), 1–6 (2017)

    Google Scholar 

  25. Yoo, D.J.: Advanced projection image generation algorithm for fabrication of a tissue scaffold using volumetric distance field. Int. J. Precis. Eng. Manuf. 15(10), 2117–2126 (2014)

    Article  Google Scholar 

  26. Ruprecht, D., Müller, H.: Free form deformation with scattered data interpolation method. Geom. Modell. 281, 267–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, D., Liao, W., Dai, N., Dong, G., Tang, Y., Xie, Y.M.: Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing. Comput. Aided Des. 104, 87–89 (2018)

    Article  Google Scholar 

  28. Li, D., Dai, N., Tang, Y., Dong, G., Zhao, Y.: Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes. J. Mech. Des. 7(141), 1–13 (2019)

    Article  Google Scholar 

  29. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. In: Advances in Computational Mathematics, pp. 389–396. Springer, Berlin (1995)

  30. Kailun, H., Jin, S., Wang, C.C.L.: Support slimming for single material based additive manufacturing. Comput. Aided Des. 65, 1–10 (2015)

    Article  Google Scholar 

  31. Zhou, Q., Panetta, J., Zorin, D.: Worst-case structural analysis. ACM Trans. Gr. 32(4), 137:1–137:12 (2013)

    MATH  Google Scholar 

  32. Chai, S., Chen, B., Ji, M., Yang, Z., Lau, M., Xiao-ming, F.: Stress-oriented structural optimization for frame structures. Gr. Models 97, 80–88 (2018)

    Article  MathSciNet  Google Scholar 

  33. Prévost, R., Whiting, E., Lefebvre, S., Sorkine-Hornung, O.: Make it stand: balancing shapes for 3d fabrication. ACM Trans. Gr. 32(4), 81:1–81:10 (2013)

    Article  MATH  Google Scholar 

  34. Wang, W., Liu, Y., Member, S., Jun, W., Tian, S.: Support-Free Hollowing. IEEE Trans. Vis. Comput. Gr. 24(7), 2787–2798 (2017)

    Google Scholar 

  35. Xie, Y., Chen, X.: Support-free interior carving for 3d printing. Vis. Inform. 1(1), 9–15 (2017)

    Article  Google Scholar 

  36. Bächer, M., Whiting, E., Bickel, B., Sorkine-Hornung, O.: Spin-it: optimizing moment of inertia for spinnable objects. ACM Trans. Gr. 33(4), 96:1–96:10 (2014)

    Article  MATH  Google Scholar 

  37. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R.W., Matusik, W., Bickel, B.: Computational design of mechanical characters. ACM Trans. Gr. 32(4), 83:1–83:12 (2013)

    Article  MATH  Google Scholar 

  38. Wang, L., Whiting, E.: Buoyancy optimization for computational fabrication. Comput. Gr. Forum 35(2), 49–58 (2016)

    Article  Google Scholar 

  39. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., Gross, M.: Computational design of actuated deformable characters. ACM Trans. Gr. 32(4), 82:1–82:10 (2013)

    Article  Google Scholar 

  40. Jun, W., Dick, C., Westermann, R.: A system for high-resolution topology optimization. IEEE Trans. Vis. Comput. Gr. 22, 1195–1208 (2016)

    Article  Google Scholar 

  41. Bendse, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989)

    Article  Google Scholar 

  42. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1–2), 227–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xie, Y., Steven, G.: A simple evolutionary procedure for structural optimization. Comput. Struct 49(5), 885–896 (1993)

    Article  Google Scholar 

  44. Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J. Appl. Mech. 34(1), 255–282 (2014)

    Google Scholar 

  45. Wang, W., Li, B., Qin, S.: Cross section-based hollowing and structural enhancement. Vis. Comput. 33, 949–960 (2017)

    Article  Google Scholar 

  46. Wang, W., Qin, S., Lin, L.: Support-free frame structures. Comput. Gr. 66, 154–161 (2017)

    Article  Google Scholar 

  47. Patzák, B., Rypl, D.: Object-oriented, parallel finite element framework with dynamic load balancing. Adv. Eng. Softw. 47(1), 35–50 (2012)

    Article  Google Scholar 

  48. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 577–584 (2001)

  49. Houck, C.R., Joines, J., Kay, M.G.: A genetic algorithm for function optimization: a matlab implementation. NCSU-IE-TR 95(9), 1–10 (1995)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China Grant (61772104, 61432003, 2017YFB1103700, 2016YFB1101100, 61720106005 and DUT2017TB02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfa Wang.

Ethics declarations

Conflict of interest

The authors certify that there is no conflict of interest with any individual/organization for the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Wang, S., Wang, Y. et al. A lightweight methodology of 3D printed objects utilizing multi-scale porous structures. Vis Comput 35, 949–959 (2019). https://doi.org/10.1007/s00371-019-01672-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01672-z

Keywords

Navigation