iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00371-016-1334-9
Local-to-global mesh saliency | The Visual Computer Skip to main content

Advertisement

Log in

Local-to-global mesh saliency

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

As a measure of regional importance in agreement with human perception of 3D shape, mesh saliency should be based on local geometric information within a mesh but more than that. Recent research has shown that global consideration has a significant role in mesh saliency. This paper proposes a local-to-global framework for computing mesh saliency where we offer novel solutions to solve three inherent problems: (1) an algorithm based on statistic Laplacian which does not only compute local saliency, but also facilitates the later computation of global saliency; (2) a local-to-global method based on pooling and global distinctness to compute global saliency; (3) a framework to integrate local and global saliency. Experiments demonstrate that our approach can effectively detect salient features consistent with human perceptual interest. We also provide comparisons to existing state-of-the-art methods for mesh saliency and show improved results produced by our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bylinskii, Z., Judd, T., Borji, A., Itti, L., Durand, F., Oliva, A., Torralba, A.: Mit saliency benchmark. http://saliency.mit.edu/

  2. Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Proceedings of Eurographics, pp. 643–652 (2008)

  3. Chen, X., Saparov, A., Pang, B., Funkhouser, T.: Schelling points on 3D surface meshes. In: Proceedings of SIGGRAPH (2012)

  4. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmonic Anal. 21(1), 53–94 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3(3), 201–215 (2002)

    Article  Google Scholar 

  6. Dey, T.K., Ranjan, P., Wang, Y.: Convergence, stability, and discrete approximation of laplace spectra. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 650–663 (2010)

  7. Feixas, M., Sbert, M., González, F.: A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. (TAP) 6(1), 1 (2009)

    Article  Google Scholar 

  8. Fu, H., Cohen-Or, D., Dror, G., Sheffer, A.: Upright orientation of man-made objects. In: ACM transactions on graphics (TOG), vol. 27, p. 42. ACM (2008)

  9. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)

    Article  Google Scholar 

  10. Guy, G., Medioni, G.: Inference of surfaces, 3d curves, and junctions from sparse, noisy, 3d data. IEEE Trans. Pattern Anal. Mach. Intell. 19(11), 1265–1277 (1997)

    Article  Google Scholar 

  11. Hou, T., Qin, H.: Admissible diffusion wavelets and their applications in space-frequency processing. IEEE Trans. Vis. Comput. Graph. 19(1), 3–15 (2013)

    Article  Google Scholar 

  12. Howard, I.: Seeing in depth. University of Toronto, Toronto (2002)

    Google Scholar 

  13. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  14. Jin, H., Soatto, S., Yezzi, A.: Multi-view stereo reconstruction of dense shape and complex appearance. IJCV 63(3), 175–189 (2005)

    Article  Google Scholar 

  15. Kim, Y., Varshney, A., Jacobs, D., Guimbretiere, F.: Mesh saliency and human eye fixations. ACM Trans. Appl. Percept. 7(2), 12:1–12:13 (2010)

    Article  Google Scholar 

  16. Koch, C., Poggio, T.: Predicting the visual world: silence is golden. Nat. Neurosci. 2, 9–10 (1999)

    Article  Google Scholar 

  17. Koenderink, J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lang, C., Nguyen, T.V., Katti, H., Yadati, K., Kankanhalli, M., Yan, S.: Depth matters: Influence of depth cues on visual saliency. In: Proceedings of ECCV, pp. 101–115. Springer (2012)

  19. Lee, C., Varshney, A., Jacobs, D.: Mesh saliency. In: Proceedings of SIGGRAPH (2005)

  20. Lee, S., Xin, J., Westland, S.: Evaluation of image similarity by histogram intersection. Color Res. Appl. 30(4), 265–274 (2005)

    Article  Google Scholar 

  21. Leifman, G., Shtrom, E., Tal, A.: Surface regions of interest for viewpoint selection. In: Proceedings of CVPR (oral) (2012)

  22. Mantiuk, R., Myszkowski, K., Pattanaik, S.: Attention guided mpeg compression for computer animations. In: Spring Conference on Computer graphics, pp. 239–244. ACM (2003)

  23. Matlin, M.W.: Cognition (Textbook), 8th edn. Wiley, New York (2013)

    Google Scholar 

  24. Newman, M.E.: The mathematics of networks. The new palgrave encyclopedia of economics (2008)

  25. Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum 22(3), 281–289 (2003)

    Article  Google Scholar 

  26. Pelphrey, K., Sasson, N., Reznick, J., Paul, G., Goldman, B., Piven, J.: Visual scanning of faces in autism. J. Autism Dev. Disord. 32(4), 249–261 (2002)

    Article  Google Scholar 

  27. Perron, O.: Zur theorie der matrices. Mathematische Annalen 64(2), 248–263 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  28. Secord, A., Lu, J., Finkelstein, A., Singh, M., Nealen, A.: Perceptual models of viewpoint preference. ACM Trans. Graph. (TOG) 30(5), 109 (2011)

    Article  Google Scholar 

  29. Shilane, P., Funkhouser, T.: Distinctive regions of 3d surfaces. ACM Trans. Graph. 26(2), 7 (2007)

    Article  Google Scholar 

  30. Song, R., Liu, Y., Martin, R.R., Rosin, P.L.: Mesh saliency via spectral processing. ACM Trans. Graph. 33(1), 6 (2014)

    Article  MATH  Google Scholar 

  31. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of SGP, pp. 1383–1392 (2009)

  32. Tao, P., Cao, J., Li, S., Liu, X., Liu, L.: Mesh saliency via ranking unsalient patches in a descriptor space. Comput. Graph. 46, 264–274 (2015)

    Article  Google Scholar 

  33. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of SIGGRAPH, pp. 351–358. ACM (1995)

  34. Wolfe, J.M.: Guided search 2.0 a revised model of visual search. Psychon. Bull. Rev. 1(2), 202–238 (1994)

    Article  Google Scholar 

  35. Wu, J., Shen, X., Zhu, W., Liu, L.: Mesh saliency with global rarity. Graph. Models. 75(5), 255–264 (2013)

    Article  Google Scholar 

  36. Yee, H., Pattanaik, S., Greenberg, D.: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. Graph. 20(1), 39–65 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly funded by EPSRC via the ‘Automatic Semantic Analysis of 3D Content in Digital Repositories’ project (EP/L006685/1). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, R., Liu, Y., Martin, R.R. et al. Local-to-global mesh saliency. Vis Comput 34, 323–336 (2018). https://doi.org/10.1007/s00371-016-1334-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1334-9

Keywords

Navigation