iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00366-021-01454-Z
On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system | Engineering with Computers Skip to main content
Log in

On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This research presents a numerical investigation on the dynamic information of the axisymmetric sandwich annular sector plate via a higher-order continuum elasticity theory. The sandwich annular sector plate comprises multi-hybrid nanocomposite reinforced (MHCR) face sheets in the top, bottom layers, and a honeycomb core. For modeling the thermal situation and the thickness of the structure, three-kinds of thermal loading are presented. For simulating MHCR face sheets, the role of the mixture and Halpin–Tsai micromechanics model is utilized. For obtaining the governing equations and various boundary conditions, first-order shear deformation theory (FSDT), as well as Hamilton’s principle, are presented. For solving the equations and obtaining eigenvalue, and eigenvector of the current structure, discrete singular convolution method (DSCM) as a numerical one is investigated. Consequently, a parametric study is carried out to examine the impacts of honeycomb network angle, thickness to length ratio of the honeycomb, honeycomb to face sheet thickness ratio, fibers angel, outer to inner radius ratio, and weight fraction of CNTs on the dynamics of the current sandwich structure. The results show that for clamped edge and each th/lh, increasing \(\theta_{h} /\pi\) is a reason for decreasing the natural frequency of the disk. Another consequence is that the impact of temperature changes on the frequency of the disk is hardly dependent on the fiber angle. It means that the effect of temperature changes on the frequencies of the current system is more considerable at 0.2 ≤ θfπ ≤ 0.4 and 0.6 ≤ θfπ ≤ 0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

h, R i, and R o :

Thickness, the inner and outer radius of the disk, respectively

CNTs:

Carbon-nanotubes

F and NCM:

Indicates fiber and nanocomposite matrix, respectively

\( \rho ,\;E,\nu \;{\text{and}}\;G \) :

Illustrates the density, Young’s module, Poisson’s ratio, and shear parameters, respectively

V NCM, V F :

Volume fractions of nanocomposite matrix and fiber, respectively

l CNT, t CNT, d CNT, E CNT and V CNT :

Indicates the length, thickness, diameter, Young’s module, and volume fraction of carbon nanotubes, respectively

\(V_{*}^{{{\text{CNT}}}}\), W CNT :

Effective volume fraction and weight fraction of the CNTs, respectively

Nt, V CNT :

Layer number and volume fraction of CNTs

\(\alpha^{11} \;{\text{and}}\;\alpha^{22}\) :

Thermal expansion coefficients of the multi-scale hybrid nanocomposite

\(\alpha^{{{\text{NCM}}}}\) :

The thermal expansion coefficient of the nanocomposite matrix

\(E^{11}\) and \(E^{22}\) :

Represents Young modulus in x and y directions, respectively

\(\nu^{12}\) and \(\nu^{21}\) :

Represents poison’s ratio in x and y directions, respectively

t m, h H, l m, and \(\theta_{h}\) :

Indicates the cell wall thickness and are the sides of the hexagonal cell, and angle of honeycomb core respectively

D 1, D 2, D 3 :

Displacement fields of a disk

u 0, v 0, w 0, u 1 , and v 1 :

Indicates the displacements of the mid-surface in R, \(\theta\) and Z directions and rotations of the transverse normal around R and θ directions, respectively

\(\varepsilon_{RR}\) and \(\varepsilon_{\theta \theta }\) :

Indicates the corresponding normal strains in R and θ directions, respectively

\(\gamma_{RZ} ,\,\,\,\gamma_{R\theta } \,\,and\,\,\,\gamma_{\theta Z}\) :

Represents the shear strain in the RZ, R\(\theta\) and \(\theta\)Z plane

O, \({\Theta }\), and \(\Upsilon\) :

Represents corresponding kinetic energy, strain energy of the system, the work is done, respectively

N T :

Indicate applied forces due to variation of temperature

ΔT :

Indicate the temperature changes

\({\mathbb{C}}_{ij}\) :

Stiffness elements

\(\theta_{f}\) :

Represent the lamination angle with respect to the disk R axis

\(\theta\) :

Represent the spane angle of annular plate

N r and N θ :

Represents, are the number of grid points along the radial and circumferential directions, respectively

d, b, and \(\delta\) :

Indicates d as a subscript stand for the domain grid-points, b as subscript stands for boundary grid-points and the displacement vector, respectively

M ij and K ij :

Components of inertia and stiffness matrices, respectively

M ij * and K ij * :

Components of inertia and stiffness matrices in the GDQ method, respectively

\(\omega_{n}\) and \(\overline{\omega }_{n}\) :

Represents dimensional and non-dimensional of natural frequency

References

  1. Zhang L, Chen Z, Habibi M, Ghabussi A, Alyousef R (2021) Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel. Compos Struct 269:114000

  2. Chen Y, He L, Guan Y, Lu H, Li J (2017) Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: case study in Barnett, Marcellus, Fayetteville, and Haynesville Shales. Energy Convers Manage 134:382–398

    Article  Google Scholar 

  3. Chen Y, Li J, Lu H, Yan P (2021) Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains. J Clean Prod 278:123209

  4. Liu J, Yi Y, Wang X (2020) Exploring factors influencing construction waste reduction: a structural equation modeling approach. J Clean Prod 276:123185

  5. Zhu L, Zhang C, Guan X, Uy B, Sun L, Wang B (2018) The multi-axial strength performance of composited structural BCW members subjected to shear forces. Steel Compos Struct 27:75–87

    Google Scholar 

  6. Mukhopadhyay T, Adhikari S (2016) Free-vibration analysis of sandwich panels with randomly irregular honeycomb core. J Eng Mech 142:06016008

    Google Scholar 

  7. Mozafari H, Najafian S (2017) Vibration analysis of foam filled honeycomb sandwich panel–numerical study. Aust J Mech Eng

  8. Xu G, Zeng T, Cheng S, Wang X, Zhang K (2019) Free vibration of composite sandwich beam with graded corrugated lattice core. Compos Struct 229:111466

  9. Amini A, Mohammadimehr M, Faraji A (2019) Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator. Steel Compos Struct 32:671–686

    Google Scholar 

  10. Chen F, Jin Z, Wang E, Wang L, Jiang Y, Guo P et al (2021) Relationship model between surface strain of concrete and expansion force of reinforcement rust. Sci Rep 11:1–11

    Google Scholar 

  11. Bai Y, Wang s, Mou B, Wang Y, Skalomenos KA (2021) Bi-directional seismic behavior of steel beam-column connections with outer annular stiffener. Eng Struct 227:111443

  12. Chen F, Zhong Y, Gao X, Jin Z, Wang E, Zhu F et al (2021) Non-uniform model of relationship between surface strain and rust expansion force of reinforced concrete. https://doi.org/10.1038/s41598-021-88146-2

  13. Wang P, Liu Y (2021) SEMA: secure and efficient message authentication protocol for VANETs. IEEE Syst J 15:846–855

    Article  Google Scholar 

  14. Shahverdi H, Barati MR, Hakimelahi B (2019) Post-buckling analysis of honeycomb core sandwich panels with geometrical imperfection and graphene reinforced nano-composite face sheets. Mater Res Express 6:095017

  15. Wang L, Peng Y, Xie Y, Chen B, Du Y (2021) A new iteration regularization method for dynamic load identification of stochastic structures. Mech Syst Signal Process 156:107586

  16. Jiang Q, Shao F, Lin W, Gu K, Jiang G, Sun H (2017) Optimizing multistage discriminative dictionaries for blind image quality assessment. IEEE Trans Multimedia 20:2035–2048

    Article  Google Scholar 

  17. Yang S, Wang J, Hao X, Li H, Wei X, Deng B et al (2021) BiCoSS: toward large-scale cognition brain with multigranular neuromorphic architecture. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.3045492

  18. Zhang J, Wang M, Tang Y, Ding Q, Wang C, Huang X et al (2021) Angular velocity measurement with improved scale factor based on a wideband-tunable optoelectronic oscillator. IEEE Trans Instrum Meas 70:1–9

    Article  Google Scholar 

  19. Wang Y, Zhang Z, Xue X, Zhang L (2019) Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core. Thin Walled Struct 145:106425

  20. Zhang Z-J, Han B, Zhang Q-C, Jin F (2017) Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores. Compos Struct 171:335–344

    Article  Google Scholar 

  21. Zhang Y, Li Y (2019) Nonlinear dynamic analysis of a double curvature honeycomb sandwich shell with simply supported boundaries by the homotopy analysis method. Compos Struct 221:110884

  22. Ebrahimi F, Dabbagh A (2019) Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization model. Compos Part B Eng 173:106955

  23. Lv S, Liu Y (2021) PLVA: privacy-preserving and lightweight V2I authentication protocol. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2021.3059638

  24. Zhang K, Huo Q, Zhou Y-Y, Wang H-H, Li G-P, Wang Y-W et al (2019) Textiles/metal–organic frameworks composites as flexible air filters for efficient particulate matter removal. ACS Appl Mater Interfaces 11:17368–17374

    Article  Google Scholar 

  25. Zhang K, Yang Z, Mao X, Chen X-L, Li H-H, Wang Y-Y (2020) Multifunctional textiles/metal−organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction. ACS Appl Mater Interfaces 12:55316–55323

    Article  Google Scholar 

  26. Zhao X, Chen B, Li Y, Zhu W, Nkiegaing F, Shao Y (2020) Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions. J Sound Vib 464:115001

  27. Tavakoli Maleki A, Pourseifi M, Zakeri M (2020) Effect of agglomeration of the nanotubes on the vibration frequency of the multi-scale hybrid nanocomposite conical shells: a GDQ-based study. Waves Random Complex Media:1–22. https://doi.org/10.1080/17455030.2020.1773007

  28. Mirjavadi SS, Forsat M, Barati MR, Hamouda AS (2020) Nonlinear vibrations of variable thickness curved panels made of multi-scale epoxy/fiberglass/CNT material using Jacobi elliptic functions. Mech Based Design Struct Mach:1–17. https://doi.org/10.1080/15397734.2020.1777156

  29. Safarpour M, Ebrahimi F, Habibi M, Safarpour H (2020) On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Comput:1–20. https://doi.org/10.1007/s00366-020-00949-5

  30. Al-Furjan M, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A (2020) Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM. Compos Struct 252:112737. https://doi.org/10.1016/j.compstruct.2020.112737

  31. Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi Aet al (2020) Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin Walled Struct 154;106840

  32. Huang X, Zhang Y, Moradi Z, Shafiei N (2021) Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube. Eng Comput:1–18

  33. Safarpour M, Rahimi A, NoormohammadiArani O, Rabczuk T (2020) Frequency characteristics of multiscale hybrid nanocomposite annular plate based on a Halpin-Tsai homogenization model with the aid of GDQM. Appl Sci 10:1412

    Article  Google Scholar 

  34. Chen H, Miao Y, Chen Y, Fang L, Zeng L, Shi J (2021) Intelligent model-based integrity assessment of nonstationary mechanical system. J Web Eng:253–280. https://doi.org/10.13052/jwe1540-9589.2022

  35. Zhao X, Zhu W, Li Y (2020) Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions. J Sound Vib 481:115407

  36. Jiang J, Peng Z, Ye M, Wang Y, Wang X, Bao W (2021) Thermal effect of welding on mechanical behavior of high-strength steel. J Mater Civ Eng 33:04021186

    Article  Google Scholar 

  37. Zhang T, Wu X, Shaheen SM, Rinklebe J, Bolan NS, Ali EF et al (2021) Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure. J Hazard Mater 416:125738

  38. Qu S, Xu W, Zhao J, Zhang H (2021) Design and implementation of a fast sliding-mode speed controller with disturbance compensation for SPMSM system. IEEE Trans Transp Electr. https://doi.org/10.1109/TTE.2021.3060102

  39. Civalek Ö, Avcar M (2020) Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng Comput:1–33. https://doi.org/10.1007/s00366-020-01168-8

  40. Civalek Ö, Baltacıoğlu AK (2018) Vibration of carbon nanotube reinforced composite (CNTRC) annular sector plates by discrete singular convolution method. Compos Struct 203:458–465

    Article  Google Scholar 

  41. Sheng D, Zhang S, Yu Z, Zhang J (2013) Assessing frost susceptibility of soils using PCHeave. Cold Reg Sci Technol 95:27–38

    Article  Google Scholar 

  42. Zhou M, Li Y, Tahir MJ, Geng X, Wang Y, He W (2021) Integrated statistical test of signal distributions and access point contributions for Wi-Fi indoor localization. IEEE Trans Veh Technol. https://doi.org/10.1109/TVT.2021.3076269

  43. Zhou M, Wang Y, Liu Y, Tian Z (2019) An information-theoretic view of WLAN localization error bound in GPS-denied environment. IEEE Trans Veh Technol 68:4089–4093

    Article  Google Scholar 

  44. Zhou M, Li X, Wang Y, Li S, Ding Y, Nie W (2020) 6G Multi-source information fusion based indoor positioning via Gaussian kernel density estimation. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2020.3031639

  45. Gibigaye M, Yabi CP, Degan G (2018) Free vibration analysis of dowelled rectangular isotropic thin plate on a Modified Vlasov soil type by using discrete singular convolution method. Appl Math Model 61:618–633

    Article  MathSciNet  MATH  Google Scholar 

  46. Hou F, Wu S, Moradi Z et al (2021) The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation. Eng Comput. https://doi.org/10.1007/s00366-021-01456-x

    Article  Google Scholar 

  47. Safa M, Shariati M, Ibrahim Z, Toghroli A, Baharom SB, Nor NM et al (2016) Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel Compos Struct 21:679–688

    Article  Google Scholar 

  48. Mohammadhassani M, Nezamabadi-Pour H, Suhatril M, Shariati M (2014) An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups. Smart Struct Syst Int J 14:785–809

    Article  Google Scholar 

  49. Shariat M, Shariati M, Madadi A, Wakil K (2018) Computational Lagrangian multiplier method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams. Steel Compos Struct 29:243–256

    Google Scholar 

  50. Chahnasir ES, Zandi Y, Shariati M, Dehghani E, Toghroli A, Mohamad ET et al (2018) Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. Smart Struct Syst 22:413–424

    Google Scholar 

  51. Sedghi Y, Zandi Y, Shariati M, Ahmadi E, Azar VM, Toghroli A et al (2018) Application of ANFIS technique on performance of C and L shaped angle shear connectors. Smart Struct Syst 22:335–340

    Google Scholar 

  52. Mansouri I, Safa M, Ibrahim Z, Kisi O, Tahir M, Baharom S et al (2016) Strength prediction of rotary brace damper using MLR and MARS. Struct Eng Mech Int J 60:471–488

    Article  Google Scholar 

  53. Rafiee M, Liu X, He X, Kitipornchai S (2014) Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. J Sound Vib 333:3236–3251

    Article  Google Scholar 

  54. Kim M, Park Y-B, Okoli OI, Zhang C (2009) Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos Sci Technol 69:335–342

    Article  Google Scholar 

  55. Rafiee M, Yang J, Kitipornchai S (2013) Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos Struct 96:716–725

    Article  Google Scholar 

  56. Wu H, Kitipornchai S, Yang J (2017) Imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Appl Math Model 42:735–752

    Article  MathSciNet  MATH  Google Scholar 

  57. Ebrahimi F, Habibi S (2018) Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments. Mech Adv Mater Struct 25:425–438

    Article  Google Scholar 

  58. Ebrahimi F, Dabbagh A (2019) On thermo-mechanical vibration analysis of multi-scale hybrid composite beams. J Vib Control 25:933–945

    Article  MathSciNet  Google Scholar 

  59. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

  60. Safarpour M, Alibeigloo A (2021) Elasticity solution for bending and frequency behavior of sandwich cylindrical shell with FG-CNTRC face-sheets and polymer core under initial stresses. Int J Appl Mech. https://doi.org/10.1142/S1758825121500204

  61. Rahimi A, Alibeigloo A, Safarpour M (2020) Three-dimensional static and free vibration analysis of graphene platelet–reinforced porous composite cylindrical shell. J Vib Control. https://doi.org/10.1177/1077546320902340

    Article  MathSciNet  MATH  Google Scholar 

  62. Al-Furjan MSH, Moghadam SA, Dehini R, Shan L, Habibi M, Safarpour H (2020) Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling. Thin Walled Struct:107242. https://doi.org/10.1016/j.tws.2020.107242 (2020/11/07/ 2020)

  63. Al-Furjan M, Habibi M, won Jung D, Safarpour H, Safarpour M (2020) On the buckling of the polymer-CNT-fiber nanocomposite annular system under thermo-mechanical loads. Mech Based Design Struct Mach:1–21. https://doi.org/10.1080/15397734.2020.1830106

  64. Al-Furjan M, Habibi M, won Jung D, Chen G, Safarpour M, Safarpour H (2020) Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel. Eur J Mech A Solids 85:104091

  65. Al-Furjan M, Oyarhossein MA, Habibi M, Safarpour H, Jung DW (2020) Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis. Thin Walled Struct 157:107111

  66. Al-Furjan M, Mohammadgholiha M, Alarifi IM, Habibi M, Safarpour H (2020) On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework. Eng Comput:1–17. https://doi.org/10.1007/s00366-020-01152-2

  67. Lori ES, Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput:1–20. https://doi.org/10.1007/s00366-020-01004-z

  68. Al-Furjan M, Habibi M, Safarpour H (2020) Vibration control of a smart shell reinforced by graphene nanoplatelets. Int J Appl Mech. https://doi.org/10.1142/S1758825120500660

  69. Moayedi H, Aliakbarlou H, Jebeli M, Noormohammadiarani O, Habibi M, Safarpour H et al (2020) Thermal buckling responses of a graphene reinforced composite micropanel structure. Int J Appl Mech 12:2050010

    Article  Google Scholar 

  70. Oyarhossein MA, Alizadeh AA, Habibi M, Makkiabadi M, Daman M, Safarpour H et al (2020) Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Sci Rep 10:1–19

  71. Habibi M, Safarpour M, Safarpour H (2020) Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods. Mech Based Design Struct Mach:1–22. https://doi.org/10.1080/15397734.2020.1779086

  72. Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Eur Phys J Plus 135:144

    Article  Google Scholar 

  73. Liu H, Hong J, Zhang D (2020) Bending and vibration of a discontinuous beam with a curvic coupling under different axial forces. Front Mech Eng 15:417–429

    Article  Google Scholar 

  74. Zeng J, Zhao C, Ma H, Wen B (2020) Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections. Front Mech Eng 15:374–389

    Article  Google Scholar 

  75. Yang L, Mao Z, Wu S, Chen X, Yan R (2021) Nonlinear dynamic behavior of rotating blade with breathing crack. Front Mech Eng:1–25. https://doi.org/10.1007/s11465-020-0609-z

  76. Zhang S, Wang L, Yi A, Gu H, Chen X, Jiang H et al (2020) Dynamic modulation performance of ferroelectric liquid crystal polarization rotators and Mueller matrix polarimeter optimization. Front Mech Eng:1–9. https://doi.org/10.1007/s11465-019-0573-7

  77. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

  78. Moradi Z, Davoudi M, Ebrahimi F, Ehyaei AF (2021) Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller. Waves Random Complex Media:1–24. https://doi.org/10.1080/17455030.2021.1926572

  79. Gao K, Gao W, Wu B, Wu D, Song C (2018) Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin Walled Struct 125:281–293

    Article  Google Scholar 

  80. Zhao Y, Moradi Z, Davoudi M, Zhuang J (2021) Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory. Eng Comput:1–23

  81. Ma L, Liu X, Moradi Z (2021) On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation. Eng Comput:1–25

  82. X. Huang, Y. Zhu, P. Vafaei, Z. Moradi, and M. Davoudi, "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate," Engineering with Computers, pp. 1–13, 2021.

  83. Jiao J, Ghoreishi SM, Moradi Z, Oslub K (2021) Coupled particle swarm optimization method with genetic algorithm for the static–dynamic performance of the magneto-electro-elastic nanosystem. Eng Comput:1–15

  84. Aria AI, Biglari H (2018) Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory. Appl Math Comput 321:313–332

    MathSciNet  MATH  Google Scholar 

  85. Al-Furjan M, Bolandi SY, Habibi M, Ebrahimi F, Chen G, Safarpour H (2021) Enhancing vibration performance of a spinning smart nanocomposite reinforced microstructure conveying fluid flow. Eng Comput:1–16. https://doi.org/10.1007/s00366-020-01255-w

  86. Zare R, Najaafi N, Habibi M, Ebrahimi F, Safarpour H (2020) Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller. Smart Struct Syst 26:469–480

    Google Scholar 

  87. Liu H, Shen S, Oslub K, Habibi M, Safarpour H (2021) Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity. Eng Comput:1–15. https://doi.org/10.1007/s00366-021-01316-8

  88. Al-Furjan M, Habibi M, Ebrahimi F, Chen G, Safarpour M, Safarpour H (2020) A coupled thermomechanics approach for frequency information of electrically composite microshell using heat-transfer continuum problem. Eur Phys J Plus 135:1–45

    Article  Google Scholar 

  89. Al-Furjan M, Habibi M, Ebrahimi F, Mohammadi K, Safarpour H (2020) Wave dispersion characteristics of high-speed-rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories. Waves Random Complex Media:1–27. https://doi.org/10.1080/17455030.2020.1831099

  90. Al-Furjan M, Habibi M, won Jung D, Safarpour H (2020) Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory. Compos Struct:113152. https://doi.org/10.1016/j.compstruct.2020.113152

  91. Guo J, Baharvand A, Tazeddinova D, Habibi M, Safarpour H, Roco-Videla A et al (2021) An intelligent computer method for vibration responses of the spinning multi-layer symmetric nanosystem using multi-physics modeling. Eng Comput:1–22. https://doi.org/10.1007/s00366-021-01433-4

  92. Guo Y, Mi H, Habibi M (2021) Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system. Mech Syst Signal Process 157:107723

  93. Liu H, Zhao Y, Pishbin M, Habibi M, Bashir M, Issakhov A (2021) A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method. Eng Comput:1–16. https://doi.org/10.1007/s00366-021-01419-2

  94. Huang X, Hao H, Oslub K, Habibi M, Tounsi A (2021) Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem. Eng Comput:1–17. https://doi.org/10.1007/s00366-021-01399-3

  95. Wei G (2001) A new algorithm for solving some mechanical problems. Comput Methods Appl Mech Eng 190:2017–2030

  96. Jiang D, Wang F, Lv Z, Mumtaz S, Al-Rubaye S, Tsourdos A et al (2021) QoE-aware efficient content distribution scheme for satellite-terrestrial networks. IEEE Trans Mobile Comput. https://doi.org/10.1109/TMC.2021.3074917

  97. Lou R, Wang W, Li X, Zheng Y, Lv Z (2021) Prediction of ocean wave height suitable for ship autopilot. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2021.3067040

  98. Li Y, Qiao L, Lv Z (2021) An optimized Byzantine Fault Tolerance Algorithm for consortium blockchain. Peer Peer Netw Appl:1–14. https://doi.org/10.1007/s12083-021-01103-8

  99. Yu Z, Amin SU, Alhussein M, Lv Z (2021) Research on disease prediction based on improved DeepFM and IoMT. IEEE Access 9:39043–39054

    Article  Google Scholar 

  100. Wei G, Zhao Y, Xiang Y (2001) The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution. Int J Mech Sci 43:1731–1746

    Article  MATH  Google Scholar 

  101. Ng C, Zhao Y, Wei G (2004) Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates. Comput Methods Appl Mech Eng 193:2483–2506

    Article  MATH  Google Scholar 

  102. He Z, Shi X, Li E, Li X (2020) Elastic properties and multi-scale design of long carbon fiber nonwoven reinforced plane-based isotropic composite. Compos Struct 251:112657

  103. Lv Z, Lou R, Li J, Singh AK, Song H (2021) Big data analytics for 6G-enabled massive internet of things. IEEE Internet Things J 8:5350–5359

    Article  Google Scholar 

  104. Lou R, Lv Z, Dang S, Su T, Li X (2021) Application of machine learning in ocean data. Multimedia Syst:1–10. https://doi.org/10.1007/s00530-020-00733-x

  105. Lv Z, Chen D, Li J (2021) Novel system design and implementation for the smart city vertical market. IEEE Commun Mag 59:126–131

    Article  Google Scholar 

  106. Lv Z, Chen D, Lou R, Alazab A (2021) Artificial intelligence for securing industrial-based cyber–physical systems. Futur Gener Comput Syst 117:291–298

    Article  Google Scholar 

  107. Hemmatnezhad M (2015) Experimental vibration investigation of annular plates. Computational Research Progress in Applied Science & Engineering éPEARL publication, vol 1

  108. Karimiasl M, Ebrahimi F, Akgöz B (2019) Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading. Compos Struct 223:110988

    Article  Google Scholar 

  109. Sobhy M (2020) Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J Sandw Struct Mater. https://doi.org/10.1177/1099636219900668

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Heilongjiang Provincial Undergraduate University Basic Research Business Expenses Research Project (Grant No. 2019-KYYWF-1388); Zhejiang Public Welfare Technology Application Research Project (Grant No. LY16G010009), Scientific research projects of Zhejiang Provincial Department of Education (Grant No. Y201840743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao He.

Appendix

Appendix

The variation of Eqs. (18a18c) can be achieved as below:

$$ \begin{aligned} \delta O^{*\chi } & = \int\limits_{V} {\rho^{\chi } \left( {\partial_{t} D_{1} \partial_{t} \delta D_{1} + \partial_{t} D_{2} \partial_{t} \delta D_{2} + \partial_{t} D_{3} \partial_{t} \delta D_{3} } \right)}^{\chi } \,{\text{d}}V \\ \delta O^{*\chi } & = \int\limits_{{R_{1} }}^{{R_{2} }} {\int\limits_{0}^{\theta } {\left[ \begin{gathered} \left\{ { - I^{0} \partial_{t}^{2} u_{0} - I^{1} \partial_{t}^{2} u_{1} } \right\}\delta u_{0} + \left\{ { - I^{1} \partial_{t}^{2} u_{0} - I^{2} \partial_{t}^{2} u_{1} } \right\}\delta u_{1} \hfill \\ \left\{ { - I^{0} \partial_{t}^{2} v_{0} - I^{1} \partial_{t}^{2} v_{1} } \right\}\delta v_{0} + \left\{ { - I^{1} \partial_{t}^{2} v_{0} - I^{2} \partial_{t}^{2} v_{1} } \right\}\delta v_{1} + \left\{ { - I^{0} \partial_{t}^{2} w_{0} } \right\}\delta w_{0} \hfill \\ \end{gathered} \right]^{\chi } r{\text{d}}r{\text{d}}\theta } } , \\ \end{aligned} $$
(39)
$$ \begin{aligned} \delta \Theta^{*\chi } & = \frac{1}{2}\iiint\limits_{V} {\sigma_{ij}^{\chi } \delta \varepsilon_{ij}^{\chi } {\text{d}}V} \\ & = \int\limits_{A} {\left[ \begin{gathered} \left( {N^{rr} \partial_{r} \delta u_{\,0\,} + M^{rr} \partial_{r} \delta u_{\,1\,} } \right) \hfill \\ + \left( {\frac{{N^{\theta \theta } }}{r}\partial_{\theta } \delta v_{\,0\,} + \frac{{M^{\theta \theta } }}{r}\partial_{\theta } \delta v_{\,1\,} + \frac{{N^{\theta \theta } }}{r}\delta u_{0\,} + \frac{{M^{\theta \theta } }}{r}\delta u_{1\,} } \right) \hfill \\ + \left( \begin{gathered} N^{r\theta } \partial_{r} \delta v_{\,0\,} + M^{r\theta } \partial_{r} \delta v_{\,1\,} + \frac{{N^{r\theta } }}{r}\partial_{\theta } \delta u_{\,0\,} + \frac{{M^{r\theta } }}{r}\partial_{\theta } \delta u_{\,1\,} \hfill \\ - \frac{{N^{r\theta } }}{r}\delta v_{0} - \frac{{M^{r\theta } }}{r}\delta v_{1} \hfill \\ \end{gathered} \right) \hfill \\ + \left( {(N^{rz} )\left( {\delta u_{1\,} + \partial_{r} \delta w_{\,0\,} } \right)} \right) + \left( {(N^{\theta z} )\left( {\delta v_{1\,} + \frac{1}{r}\partial_{\theta } \delta w_{\,0\,} } \right)} \right) \hfill \\ \end{gathered} \right]}^{\chi } {\text{d}}A \\ \end{aligned} $$
(40)
$$ \delta \Upsilon^{*\chi } = \int {\left[ {N^{T} \frac{{\partial w_{0} }}{\partial r}\frac{{\partial \delta w_{0} }}{\partial r} + \frac{{N^{T} }}{r}\frac{{\partial w_{0} }}{\partial r}\delta w_{0} + \frac{{N^{T} }}{{r^{2} }}\frac{{\partial w_{0} }}{\partial \theta }\frac{{\partial \delta w_{0} }}{\partial \theta }} \right]^{\chi } {\text{d}}A} , $$
(41)

where:

$$ \left\{ {I^{i} } \right\} = \int\limits_{{ - \frac{h}{2}}}^{\frac{h}{2}} {\rho_{\chi } \left( z \right)\left\{ {z^{i} } \right\}{\text{d}}Z} ,\quad i = 0:2, $$
(42)
$$ \begin{aligned} \left\{ {N^{rr} ,M^{rr} } \right\}^{\chi } & = \int_{z} {\left\{ {\sigma^{rr} ,z\sigma^{rr} } \right\}^{\chi } } {\text{d}}z; \\ \left\{ {N^{\theta \theta } ,M^{\theta \theta } } \right\}^{\chi } & = \int_{z} {\left\{ {\sigma^{\theta \theta } ,z\sigma^{\theta \theta } } \right\}^{\chi } } {\text{d}}z;\, \\ \left\{ {N^{rz} ,M^{rz} ,Q^{rz} } \right\}^{\chi } & = \int_{z} {\left\{ {\sigma^{rz} ,z\sigma^{rz} ,z^{2} \sigma^{rz} } \right\}^{\chi } } {\text{d}}z; \\ \left\{ {N^{r\theta } ,M^{r\theta } ,Q^{r\theta } } \right\}^{\chi } & = \int_{z} {\left\{ {\sigma^{r\theta } ,z\sigma^{r\theta } ,z^{2} \sigma^{r\theta } } \right\}}^{\chi } {\text{d}}z; \\ \left\{ {N^{\theta z} ,M^{\theta z} ,Q^{\theta z} } \right\}^{\chi } & = \int_{z} {\left\{ {\sigma^{\theta z} ,z\sigma^{\theta z} ,z^{2} \sigma^{\theta z} } \right\}^{\chi } } {\text{d}}z. \\ \end{aligned} $$
(43)

Motion equation of the system can be achieved as follows:

$$ \delta u_{0}^{\chi } :\,\,\partial_{r} N_{\chi }^{rr} - \frac{{N_{\chi }^{\theta \theta } - N_{\chi }^{rr} }}{r} + \frac{1}{r}\partial_{\theta } N_{\chi }^{r\theta } = I_{\chi }^{0} \partial_{t}^{\left( 2 \right)} u_{0}^{\chi } + I_{\chi }^{1} \partial_{t}^{\left( 2 \right)} u_{1}^{\chi } , $$
(44)
$$ \delta v_{0}^{\chi } :\,\,\frac{1}{r}\partial_{\theta } N_{\chi }^{\theta \theta } + \frac{{2N_{\chi }^{r\theta } }}{r} + \partial_{r} N_{\chi }^{r\theta } = I_{\chi }^{0} \partial_{t}^{\left( 2 \right)} v_{0}^{\chi } + I_{\chi }^{1} \partial_{t}^{\left( 2 \right)} v_{1}^{\chi } , $$
(45)
$$ \delta w_{0}^{\chi } :\,\partial_{r} Q_{\chi }^{r} + \frac{1}{r}\partial_{\theta } Q_{\chi }^{\theta r} + \,\frac{1}{r}Q_{\chi }^{r} - N^{T} \partial_{r}^{\left( 2 \right)} w_{0}^{\chi } - \frac{{N^{T} }}{r}\partial_{r} w_{0}^{\chi } - \frac{{N^{T} }}{{r^{2} }}\partial_{\theta }^{\left( 2 \right)} w_{0}^{\chi } = I_{\chi }^{0} \partial_{t}^{\left( 2 \right)} w_{0}^{\chi } , $$
(46)
$$ \delta u_{1}^{\chi } :\,\partial_{r} M_{\chi }^{rr} - \frac{{M_{\chi }^{\theta \theta } - M_{\chi }^{rr} }}{r} + \frac{1}{r}\partial_{\theta } M_{\chi }^{r\theta } - Q_{\chi }^{r} = I_{\chi }^{1} \partial_{t}^{\left( 2 \right)} u_{0}^{\chi } + I_{\chi }^{2} \partial_{t}^{\left( 2 \right)} u_{1}^{\chi } , $$
(47)
$$ \delta v_{1}^{\chi } :\,\frac{1}{r}\partial_{\theta } M_{\chi }^{\theta \theta } + \frac{2}{r}M_{\chi }^{r\theta } + \partial_{\theta } M_{\chi }^{r\theta } - Q_{\chi }^{\theta } = I_{\chi }^{1} \partial_{t}^{\left( 2 \right)} v_{0}^{\chi } + I_{\chi }^{2} \partial_{t}^{\left( 2 \right)} v_{1}^{\chi } . $$
(48)

In addition, the general boundary conditions can be formulated as the following relations:

$$ \delta u_{0}^{\chi } = 0\quad {\text{or}}\quad N_{\chi }^{rr} n_{r} + \frac{1}{r}N_{\chi }^{r\theta } n_{\theta } = 0; $$
(49)
$$ \delta v_{0}^{\chi } = 0\quad {\text{or}}\quad N_{\chi }^{r\theta } n_{r} + \frac{1}{r}N_{\chi }^{\theta \theta } n_{\theta } = 0; $$
(50)
$$ \delta w_{0}^{\chi } = 0\quad {\text{or}}\quad Q_{\chi }^{r} n_{r} + \frac{{Q_{\chi }^{\theta } }}{r}n_{\theta } = 0; $$
(51)
$$ \delta u_{1}^{\chi } = 0\quad {\text{or}}\quad M_{\chi }^{rr} n_{r} + \frac{{M_{\chi }^{r\theta } }}{r}n_{\theta } = 0; $$
(52)
$$ \delta v_{1}^{\chi } = 0\quad {\text{or}}\quad M_{\chi }^{r\theta } n_{r} + \frac{{M_{\chi }^{\theta \theta } }}{r}n_{\theta } = 0. $$
(53)

Based on the compatibility conditions, have:

$$ u^{c} (z_{c} = - h_{c} /2) = u^{b} (z_{b} = h_{b} /2), $$
(54)
$$ v^{c} (z_{c} = - h_{c} /2) = v^{b} (z_{b} = h_{b} /2), $$
(55)
$$ w^{c} (z_{c} = - h_{c} /2) = w^{b} (z_{p} = h_{b} /2), $$
(56)
$$ w^{c} (z_{c} = - h_{c} /2) = w^{b} (z_{p} = h_{b} /2), $$
(57)
$$ u^{c} (z_{c} = h_{c} /2) = u^{t} (z_{t} = - h_{t} /2), $$
(58)
$$ v^{c} (z_{c} = h_{c} /2) = v^{t} (z_{t} = - h_{t} /2), $$
(59)
$$ w^{c} (z_{c} = h_{c} /2) = w^{t} (z_{t} = - h_{t} /2). $$
(60)

It should be noted that, according to the Eqs. (5460), the unknown variables numbers are decreased from 15 to 9. Finally, by solving this 9 equations, the eigenvectors and eigenvalues of the structure can be achieved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, W., He, T. et al. On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system. Engineering with Computers 38 (Suppl 4), 3631–3653 (2022). https://doi.org/10.1007/s00366-021-01454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01454-z

Keywords

Navigation