iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00366-011-0239-5
Two-level refined direct optimization scheme using intermediate surrogate models for electromagnetic optimization of a switched reluctance motor | Engineering with Computers Skip to main content
Log in

Two-level refined direct optimization scheme using intermediate surrogate models for electromagnetic optimization of a switched reluctance motor

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Electromagnetic optimization procedures require a large number of evaluations in numerical forward models. These computer models simulate complex problems through the use of numerical techniques, e.g. finite elements. Hence, the evaluations need a large computational time. Two-level methods such as space mapping have been developed that include a second model so as to accelerate the inverse procedures. Contrary to existing two-level methods, we propose a scheme that enables acceleration when the second model is based on the initial numerical model with coarse discretizations. This paper validates the proposed refined direct optimization method onto algebraic test functions. Moreover, we applied the methodology onto the geometrical optimization of the magnetic circuit of a switched reluctance motor. The obtained numerical results show the efficiency of the optimization algorithm with respect to the computational time and the accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mirzaeian B, Moallem M, Tahani V, Lucas C (2002) Multiobjective optimization method based on a genetic algorithm for switched reluctance motor design. IEEE Trans Magn 38:4605–4617

    Article  Google Scholar 

  2. Wu W, Dunlop J, Collocott S, Kalan B (2003) Design optimization of a switched reluctance motor by electromagnetic and thermal finite-element analysis. IEEE Trans Magn 39:3334–3336

    Article  Google Scholar 

  3. Vijayakumar K, Karthikeyan R, Paramasivam S, Arumugam R, Srinivas K (2008) Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review. IEEE Trans Magn 44:4605–4617

    Article  Google Scholar 

  4. Bandler J, Biernacki R, Chen S, Grobelny P, Hemmers H (1994) Space mapping technique for electromagnetic optimization. IEEE Trans Microw Theory Tech 42:2536–2544

    Article  Google Scholar 

  5. Bandler J, Cheng Q, Dakroury S, Mohamed A, Bakr M, Madsen K, Søndergaard J (2004) Space mapping: state of the art. IEEE Trans Microw Theory Tech 52:337–361

    Article  Google Scholar 

  6. Echeverría D, Lahaye D, Encica L, Lomonova E, Hemker P, Vandenput A (2006) Manifold-Mapping optimization applied to linear actuator design. IEEE Trans Magn 42:1183–1186

    Article  Google Scholar 

  7. Crevecoeur G, Sergeant P, Dupré L, Vande Walle R (2008) Two-level response and parameter mapping optimization for magnetic shielding. IEEE Trans Magn 44:301–308

    Article  Google Scholar 

  8. Encica L, Echeverria D, Lomonova E, Vandenput AJA, Hemker P, Lahaye D (2007) Efficient optimal design of electromagnetic actuators using space mapping. Struct Multidisc Optim 33:481–491

    Article  Google Scholar 

  9. Encica L, Paulides J, Lomonova E (2009) Space-mapping optimization in electromechanics: an overview of algorithms and applications. Compel Int J Comp Math Electrical Electron Eng 28:1216–1226

    Article  MathSciNet  MATH  Google Scholar 

  10. Crevecoeur G, Dupré L, Vande Walle R (2007) Space mapping optimization of the magnetic circuit of electrical machines including local material degradation. IEEE Trans Magn 43:2609–2611

    Article  Google Scholar 

  11. Tran T, Brisset S, Brochet P (2007) Combinatorial and multi-level optimization of a safety isolating transformer. Int J Appl Electromagn Mech 3:201–208

    Google Scholar 

  12. Echeverría D (2007) Multi-level optimization: space mapping and manifold mapping. PhD thesis, Universiteit van Amsterdam.

  13. Alexandrov N, Dennis JE, Lewis RM, Torczon V (1998) A trust region framework for managing the use of approximation models in optimization. Struct Optim 15:16–23

    Article  Google Scholar 

  14. Booker A, Dennis JJ, Frank P, Serafini D, Torczon V, Trosset M (1999) A rigorous framework for optimization of expensive functions by surrogates. Struct Optim 17:1–13

    Google Scholar 

  15. Crevecoeur G, Sergeant P, Dupré L, Vande Walle R (2010) A two-level genetic algorithm for electromagnetic optimization. IEEE Trans Magn 46:2585–2595

    Article  Google Scholar 

  16. Gorissen D, Crombecq K, Couckuyt I, Dhaene T, Demeester P (2010) A surrogate modeling and adaptive sampling toolbox for computer based design. J Mach Learn Res 11:2051–2055

    Google Scholar 

  17. Dyck D, Lowther DA, Malik Z, Spence R, Nelder J (1999) Response surface models of electromagnetic devices and their application to design. IEEE Trans Magn 34:1821–1824

    Article  Google Scholar 

  18. Lebensztajn L, Maretto CAR, Costa L, Coulomb J-L (2004) Kriging: a useful tool for electromagnetic devices optimization. IEEE Trans Magn 40:1196–1199

    Article  Google Scholar 

  19. Mullur A, Messac A (2006) Metamodeling using extended radial basis functions: a comparative approach. Eng Comput 21:203–217

    Article  Google Scholar 

  20. Simpson T, Peplinski J, Koch P, Allen J (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17:129–150

    Article  MATH  Google Scholar 

  21. Simpson T, Booker A, Ghosh D, Giunta A, Koch P, Yang R (2004) Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct Multidiscip Optim 27:302–313

    Article  Google Scholar 

  22. Lahaye D, Canova A, Gruosso G, Repetto M (2007) Adaptive manifold-mapping using multiquadratic interpolation applied to linear actuator design. Compel Int J Comput Math Elect Electron Eng 26:225–235

    Article  MATH  Google Scholar 

  23. Karakasis MK, Giannakoglou KC (2006) On the use of metamodel-assisted, multi-objective evolutionary algorithms. Eng Optim 38:941–957

    Article  MathSciNet  Google Scholar 

  24. Couckuyt I, Declercq F, Dhaene T, Rogier H, Knockaert L (2010) Surrogate-based infill optimization applied to electromagnetic problems. Adv Design Optim Microw RF Circuits Syst 20:492–501

    Google Scholar 

  25. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:445–492

    Article  MathSciNet  Google Scholar 

  26. Shan S, Wang G (2010) Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct Multidiscip Optim 41:219–241

    Article  MathSciNet  Google Scholar 

  27. Grosso A, Jamali A, Locatelli M (2009) Finding maximin latin hypercube designs by Iterated Local Search heuristics. Eur J Oper Res 197:541–547

    Article  MATH  Google Scholar 

  28. Sacks J, Welch WJ, Mitchell T, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4:409–435

    Article  MathSciNet  MATH  Google Scholar 

  29. SQPLab available at: http://www-roc.inria.fr/gilbert/modulopt/optimization-routines/sqplab/sqplab.html

  30. Moallem M, Dawson G (1998) An improved magnetic equivalent circuit method for predicting the characteristic of highly saturated electromagnetic devices. IEEE Trans Magn 34:3632–3635

    Article  Google Scholar 

  31. Arkadan AA, Kielagas BW (1994) Switched reluctance motor drive system dynamic performance prediction and experimental verification. IEEE Trans Energy Convers 9:36–44

    Article  Google Scholar 

  32. Miller T (2002) Optimal design of switched reluctance motors. IEEE Trans Ind Electron 49:15–27

    Article  Google Scholar 

  33. Abdallh AA, Dupré L (2010) Local magnetic measurements in magnetic circuits with highly non-uniform electromagnetic fields. Meas Sci Technol 21:045109

    Article  Google Scholar 

  34. Forrester AI, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerospace Sci 45:50–79

    Article  Google Scholar 

  35. Coleman TF, Li Y (1996) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6:418–445

    Article  MathSciNet  MATH  Google Scholar 

  36. Koziel S, Bandler JW, Madsen K (2008) Quality assessment of coarse models and surrogates for space mapping optimization. Optim Eng 9:375–391

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the GOA project GOA07/GOA/006 and the IAP project IAP-P6/21. Ivo Couckuyt is funded by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). Guillaume Crevecoeur is a postdoctoral researcher of the FWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Crevecoeur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crevecoeur, G., Abdallh, A.AE., Couckuyt, I. et al. Two-level refined direct optimization scheme using intermediate surrogate models for electromagnetic optimization of a switched reluctance motor. Engineering with Computers 28, 199–207 (2012). https://doi.org/10.1007/s00366-011-0239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-011-0239-5

Keywords

Navigation