iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00224-007-9080-Z
Model Checking Abilities of Agents: A Closer Look | Theory of Computing Systems Skip to main content
Log in

Model Checking Abilities of Agents: A Closer Look

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Alternating-time temporal logic (atl) is a logic for reasoning about open computational systems and multi-agent systems. It is well known that atl model checking is linear in the size of the model. We point out, however, that the size of an atl model is usually exponential in the number of agents. When the size of models is defined in terms of states and agents rather than transitions, it turns out that the problem is (1) Δ P 3 -complete for concurrent game structures, and (2) Δ P 2 -complete for alternating transition systems. Moreover, for “Positive atl” that allows for negation only on the level of propositions, model checking is (1) Σ P 2 -complete for concurrent game structures, and (2) NP-complete for alternating transition systems. We show a nondeterministic polynomial reduction from checking arbitrary alternating transition systems to checking turn-based transition systems, We also discuss the determinism assumption in alternating transition systems, and show that it can be easily removed.

In the second part of the paper, we study the model checking complexity for formulae of atl with imperfect information (atl ir ). We show that the problem is Δ P 2 -complete in the number of transitions and the length of the formula (thereby closing a gap in previous work of Schobbens in Electron. Notes Theor. Comput. Sci. 85(2), 2004). Then, we take a closer look and use the same fine structure complexity measure as we did for atl with perfect information. We get the surprising result that checking formulae of atl ir is also Δ P 3 -complete in the general case, and Σ P 2 -complete for “Positive atl ir ”. Thus, model checking agents’ abilities for both perfect and imperfect information systems belongs to the same complexity class when a finer-grained analysis is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS), pp. 100–109. IEEE Computer Society, Los Alamitos (1997)

    Chapter  Google Scholar 

  2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-Time Temporal Logic. Lecture Notes in Computer Science, vol. 1536, pp. 23–60. Springer, Berlin (1998)

    Google Scholar 

  3. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: MOCHA user manual. In: Proceedings of CAV’98. Lecture Notes in Computer Science, vol. 1427, pp. 521–525. Springer, Berlin (1998)

    Google Scholar 

  4. Alur, R., de Alfaro, L., Grossu, R., Henzinger, T.A., Kang, M., Kirsch, C.M., Majumdar, R., Mang, F.Y.C., Wang, B.-Y.: jMocha: a model-checking tool that exploits design structure. In Proceedings of ICSE, pp. 835–836. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  5. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49, 672–713 (2002)

    Article  MathSciNet  Google Scholar 

  6. Balcázar, J.L., Diaz, J., Gabarró, J.: Structural Complexity I. Springer, Berlin (1988)

    MATH  Google Scholar 

  7. Blum, A.L., Furst, M.L.: Fast planning through graph analysis. Artif. Intell. 90, 281–300 (1997)

    Article  MATH  Google Scholar 

  8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)

    Article  MATH  Google Scholar 

  9. de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: The control of synchronous systems. In: Proceedings of CONCUR 2000. Lecture Notes in Computer Science, vol. 1877, pp. 458–473. Springer, Berlin (2000)

    Chapter  Google Scholar 

  10. de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: The control of synchronous systems, part II. In: Proceedings of CONCUR 2001. Lecture Notes in Computer Science, vol. 2154, pp. 566–580. Springer, Berlin (2001)

    Chapter  Google Scholar 

  11. Eiter, T.: Oral communication (March 2005)

  12. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)

    Google Scholar 

  13. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus linear time temporal logic. In: Proceedings of the Annual ACM Symposium on Principles of Programming Languages, pp. 151–178 (1982)

  14. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching time. J. Comput. Syst. Sci. 30(1), 1–24 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goranko, V.: Coalition games and alternating temporal logics. In: van Benthem, J. (ed.) Proceedings of TARK VIII, pp. 259–272. Morgan Kaufmann, San Mateo (2001)

    Google Scholar 

  16. Goranko, V., Jamroga, W.: Comparing semantics of logics for multi-agent systems. Synthese 139(2), 241–280 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jamroga, W.: Some remarks on alternating temporal epistemic logic. In: B. Dunin-Keplicz, R. Verbrugge, (eds.) In: Proceedings of Formal Approaches to Multi-Agent Systems (FAMAS 2003), pp. 133–140 (2003)

  18. Jamroga, W.: Using multiple models of reality. On agents who know how to play safer. PhD thesis, University of Twente (2004)

  19. Jamroga, W., Ågotnes, T.: Constructive knowledge: what agents can achieve under incomplete information. Technical Report IfI-05-10, Clausthal University of Technology (2005)

  20. Jamroga, W., Dix, J.: Do agents make model checking explode (computationally)? In: Pĕchouc̆ek, M., Petta, P., Varga, L.Z. (eds.) Proceedings of CEEMAS 2005. Lecture Notes in Computer Science, vol. 3690, pp. 398–407. Springer, Berlin (2005)

    Google Scholar 

  21. Jamroga, W., Dix, J.: Model checking strategic abilities of agents under incomplete information. In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) Proceedings of ICTCS 2005, Lecture Notes in Computer Science, vol. 3701, pp. 295–308. Springer, Berlin (2005)

    Google Scholar 

  22. Jamroga, W., Dix, J.: Turning game models turn-based for model checking properties of agents. In: Verbeeck, K., Tuyls, K., Nowé, A., Manderick, B., Kuijpers, B. (eds.) Proceedings of BNAIC, pp. 143–150 (2005)

  23. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundam. Inform. 63(2–3), 185–219 (2004)

    MATH  Google Scholar 

  24. Jonker, G.: Feasible strategies in alternating-time temporal epistemic logic. Master thesis, University of Utrecht (2003)

  25. Kacprzak, M., Penczek, W.: Unbounded model checking for alternating-time temporal logic. In: Proceedings of AAMAS-04 (2004)

  26. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)

    Article  MathSciNet  Google Scholar 

  27. Laroussinie, F.: About the expressive power of CTL combinators. Inf. Process. Lett. 54(6), 343–345 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Laroussinie, F., Markey, N., Schnoebelen, Ph.: Model checking CTL+ and FCTL is hard. In: Proceedings of FoSSaCS’01. Lecture Notes in Computer Science, vol. 2030, pp. 318–331. Springer, Berlin (2001)

    Google Scholar 

  29. Laroussinie, F., Markey, N., Oreiby, G.: Expressiveness and complexity of ATL. Technical Report LSV-06-03, CNRS & ENS Cachan, France (2006)

  30. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, Berlin (1995)

    Google Scholar 

  31. McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  32. Moore, R.C.: A formal theory of knowledge and action. In: Hobbs, J., Moore, R.C. (eds.) Formal Theories of the Commonsense World. Ablex, Norwood (1985)

    Google Scholar 

  33. Morgenstern, L.: Knowledge and the frame problem. Int. J. Expert Syst. 3(4) (1991)

  34. Papadimitriou, C.H.: Computational Complexity. Addison–Wesley, Reading (1994)

    MATH  Google Scholar 

  35. Quine, W.: Quantifiers and propositional attitudes. J. Philos. 53, 177–187 (1956)

    Article  Google Scholar 

  36. Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electron. Notes Theor. Comput. Sci. 85(2) (2004)

  37. van der Hoek, W.: Formal comment on W. Jamroga’s paper. Presented at FAMAS’03 (2003)

  38. van der Hoek, W., Wooldridge, M.: Tractable multiagent planning for epistemic goals. In: Castelfranchi, C., Johnson, W.L. (eds.) Proceedings of the First International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-02), pp. 1167–1174. ACM Press, New York (2002)

    Chapter  Google Scholar 

  39. van der Hoek, W., Wooldridge, M.: Cooperation, knowledge and time: alternating-time temporal epistemic logic and its applications. Stud. Log. 75(1), 125–157 (2003)

    Article  MATH  Google Scholar 

  40. van der Hoek, W., Lomuscio, A., Wooldridge, M.: On the complexity of practical ATL model checking. In: Stone, P., Weiss, G. (eds.) Proceedings of AAMAS’06, pp. 201–208 (2006)

  41. van Otterloo, S., Jonker, G.: On epistemic temporal strategic logic. Electron. Notes Theor. Comput. Sci. XX, 35–45 (2004). Proceedings of LCMAS’04

    Google Scholar 

  42. Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Jamroga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamroga, W., Dix, J. Model Checking Abilities of Agents: A Closer Look. Theory Comput Syst 42, 366–410 (2008). https://doi.org/10.1007/s00224-007-9080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-007-9080-z

Keywords

Navigation