iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00211-015-0728-3
The norm of a discretized gradient in $$\varvec{H({{\mathrm{div}}})^*}$$ for a posteriori finite element error analysis | Numerische Mathematik Skip to main content
Log in

The norm of a discretized gradient in \(\varvec{H({{\mathrm{div}}})^*}\) for a posteriori finite element error analysis

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper characterizes the norm of the residual of mixed schemes in their natural functional framework with fluxes or stresses in \(H({{\mathrm{div}}})\) and displacements in \(L^2\). Under some natural conditions on an associated Fortin interpolation operator, reliable and efficient error estimates are introduced that circumvent the duality technique and so do not suffer from reduced elliptic regularity for non-convex domains. For the Laplace, Stokes, and Lamé equations, this generalizes known estimators to non-convex domains and introduces new a posteriori error estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso, A.: Error estimators for a mixed method. Numer. Math. 74(4), 385–395 (1996). doi:10.1007/s002110050222

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Douglas Jr, J.: PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1(2), 347–367 (1984). doi:10.1007/BF03167064

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92(3), 401–419 (2002). doi:10.1007/s002110100348

    Article  MathSciNet  MATH  Google Scholar 

  4. Berndt, M., Manteuffel, T.A., McCormick, S.F.: Local error estimates and adaptive refinement for first-order system least squares (FOSLS). Electron. Trans. Numer. Anal. 6, 35–43 (1997) (electronic) (special issue on multilevel methods, Copper Mountain, CO, 1997)

  5. Bochev, P.B., Gunzburger, M.D.: Applied Mathematical Sciences. Least-squares finite element methods, vol. 166. Springer, New York (2009)

    Google Scholar 

  6. Braess, D.: Finite elements, 3rd edn. Cambridge University Press, Cambridge (2007). doi:10.1017/CBO9780511618635 (Theory, fast solvers, and applications in elasticity theory, translated from the German by Larry L. Schumaker)

  7. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol 15, 3rd edn. Springer, New York (2008). doi:10.1007/978-0-387-75934-0

  8. Brezzi, F., Fortin, M.: Springer Series in Computational Mathematics. Mixed and hybrid finite element methods, vol. 15. Springer, New York (1991)

    Google Scholar 

  9. Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42(2), 843–859 (2004) (electronic). doi:10.1137/S0036142903422673

  10. Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66(218), 465–476 (1997). doi:10.1090/S0025-5718-97-00837-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Carstensen, C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100(4), 617–637 (2005). doi:10.1007/s00211-004-0577-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Carstensen, C., Bahriawati, C.: Three matlab implementations of the lowest-order Raviart–Thomas MFEM with a posteriori error control. CMAM 5(4), 333–361 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Carstensen, C., Dolzmann, G.: A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81(2), 187–209 (1998). doi:10.1007/s002110050389

    Article  MathSciNet  MATH  Google Scholar 

  14. Carstensen, C., Hu, J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107(3), 473–502 (2007). doi:10.1007/s00211-007-0068-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Carstensen, C., Kim, D., Park, E.J.: A priori and a posteriori pseudostress-velocity mixed finite element error analysis for the Stokes problem. SIAM J. Numer. Anal. 49, 2501–2523 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Demlow, A., Hirani, A.N.: A posteriori error estimates for finite element exterior calculus: the de Rham complex. Found. Comput. Math. 14(6), 1337–1371 (2014). doi:10.1007/s10208-014-9203-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Gatica, G.N., Márquez, A., Sánchez, M.A.: Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Eng. 199(17–20), 1064–1079 (2010). doi:10.1016/j.cma.2009.11.024

    Article  MATH  Google Scholar 

  18. Gatica, G.N., Oyarzúa, R., Sayas, F.J.: A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem. Comput. Methods Appl. Mech. Eng. 200(21–22), 1877–1891 (2011). doi:10.1016/j.cma.2011.02.009

    Article  MATH  Google Scholar 

  19. Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comput. 77(262), 633–649 (2008). doi:10.1090/S0025-5718-07-02030-3

    Article  MATH  Google Scholar 

  20. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513–538 (1988). doi:10.1007/BF01397550

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Peterseim.

Additional information

Dedicated to Professor Volker Mehrmann on the occasion of his 60th birthday.

The authors gratefully acknowledge support by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 “Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis” under the projects “Foundation and application of generalized mixed FEM towards nonlinear problems in solid mechanics”, “Adaptive isogeometric modeling of propagating strong discontinuities in heterogeneous materials” and “High-order immersed-boundary methods in solid mechanics for structures generated by additive processes”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carstensen, C., Peterseim, D. & Schröder, A. The norm of a discretized gradient in \(\varvec{H({{\mathrm{div}}})^*}\) for a posteriori finite element error analysis. Numer. Math. 132, 519–539 (2016). https://doi.org/10.1007/s00211-015-0728-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0728-3

Mathematics Subject Classification

Navigation