Abstract
This paper characterizes the norm of the residual of mixed schemes in their natural functional framework with fluxes or stresses in \(H({{\mathrm{div}}})\) and displacements in \(L^2\). Under some natural conditions on an associated Fortin interpolation operator, reliable and efficient error estimates are introduced that circumvent the duality technique and so do not suffer from reduced elliptic regularity for non-convex domains. For the Laplace, Stokes, and Lamé equations, this generalizes known estimators to non-convex domains and introduces new a posteriori error estimators.
Similar content being viewed by others
References
Alonso, A.: Error estimators for a mixed method. Numer. Math. 74(4), 385–395 (1996). doi:10.1007/s002110050222
Arnold, D.N., Brezzi, F., Douglas Jr, J.: PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1(2), 347–367 (1984). doi:10.1007/BF03167064
Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92(3), 401–419 (2002). doi:10.1007/s002110100348
Berndt, M., Manteuffel, T.A., McCormick, S.F.: Local error estimates and adaptive refinement for first-order system least squares (FOSLS). Electron. Trans. Numer. Anal. 6, 35–43 (1997) (electronic) (special issue on multilevel methods, Copper Mountain, CO, 1997)
Bochev, P.B., Gunzburger, M.D.: Applied Mathematical Sciences. Least-squares finite element methods, vol. 166. Springer, New York (2009)
Braess, D.: Finite elements, 3rd edn. Cambridge University Press, Cambridge (2007). doi:10.1017/CBO9780511618635 (Theory, fast solvers, and applications in elasticity theory, translated from the German by Larry L. Schumaker)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol 15, 3rd edn. Springer, New York (2008). doi:10.1007/978-0-387-75934-0
Brezzi, F., Fortin, M.: Springer Series in Computational Mathematics. Mixed and hybrid finite element methods, vol. 15. Springer, New York (1991)
Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42(2), 843–859 (2004) (electronic). doi:10.1137/S0036142903422673
Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66(218), 465–476 (1997). doi:10.1090/S0025-5718-97-00837-5
Carstensen, C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100(4), 617–637 (2005). doi:10.1007/s00211-004-0577-y
Carstensen, C., Bahriawati, C.: Three matlab implementations of the lowest-order Raviart–Thomas MFEM with a posteriori error control. CMAM 5(4), 333–361 (2005)
Carstensen, C., Dolzmann, G.: A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81(2), 187–209 (1998). doi:10.1007/s002110050389
Carstensen, C., Hu, J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107(3), 473–502 (2007). doi:10.1007/s00211-007-0068-z
Carstensen, C., Kim, D., Park, E.J.: A priori and a posteriori pseudostress-velocity mixed finite element error analysis for the Stokes problem. SIAM J. Numer. Anal. 49, 2501–2523 (2011)
Demlow, A., Hirani, A.N.: A posteriori error estimates for finite element exterior calculus: the de Rham complex. Found. Comput. Math. 14(6), 1337–1371 (2014). doi:10.1007/s10208-014-9203-2
Gatica, G.N., Márquez, A., Sánchez, M.A.: Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Eng. 199(17–20), 1064–1079 (2010). doi:10.1016/j.cma.2009.11.024
Gatica, G.N., Oyarzúa, R., Sayas, F.J.: A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem. Comput. Methods Appl. Mech. Eng. 200(21–22), 1877–1891 (2011). doi:10.1016/j.cma.2011.02.009
Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comput. 77(262), 633–649 (2008). doi:10.1090/S0025-5718-07-02030-3
Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513–538 (1988). doi:10.1007/BF01397550
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Professor Volker Mehrmann on the occasion of his 60th birthday.
The authors gratefully acknowledge support by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 “Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis” under the projects “Foundation and application of generalized mixed FEM towards nonlinear problems in solid mechanics”, “Adaptive isogeometric modeling of propagating strong discontinuities in heterogeneous materials” and “High-order immersed-boundary methods in solid mechanics for structures generated by additive processes”.
Rights and permissions
About this article
Cite this article
Carstensen, C., Peterseim, D. & Schröder, A. The norm of a discretized gradient in \(\varvec{H({{\mathrm{div}}})^*}\) for a posteriori finite element error analysis. Numer. Math. 132, 519–539 (2016). https://doi.org/10.1007/s00211-015-0728-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-015-0728-3