Abstract
In this paper we consider a (one-shot) multigrid strategy for solving the discretized optimality system (KKT system) of a PDE-constrained optimization problem. In particular, we discuss the construction of an additive Schwarz-type smoother for a certain class of optimal control problems. A rigorous multigrid convergence analysis is presented. Numerical experiments are shown which confirm the theoretical results.
Similar content being viewed by others
References
Arian, E., Ta’asan, S.: Multigri one-shot methods for optimal control problems: Infinite dimensional control. ICASE-Report 94-52, NASA Langley Research Center, Hampton (1994)
Babuška I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)
Battermann A., Heinkenschloss M. et al.: Preconditioners for Karush–Kuhn–Tucker matrices arising in the optimal control of distributed systems. In: Desch, W. (eds) Control and Estimation of Distributed Parameter Systems. Int. Ser. Numer. Math. 126., pp. 15–32. Birkhäuser, Basel (1998)
Battermann A., Sachs E.W. et al.: Block preconditioners for KKT systems in PDE-governed optimal control problems. In: Hoffmann, Karl-Heinz. (eds) Fast solution of discretized optimization problems. Int. Ser. Numer. Math. 138, pp. 1–18. Birkhäuser, Basel (2001)
Biros G., Ghattas O.: Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part I: The Krylov–Schur solver. SIAM J. Sci. Comput. 27(2), 687–713 (2005)
Borzì A., Kunisch K., Kwak D.Y.: Accuracy and convergence properties of the finite difference multigrid solution of an optimal control optimality system. SIAM J. Control Optim. 41(5), 1477–1497 (2003)
Braess D., Sarazin R.: An efficient smoother for the Stokes problem. Appl. Numer. Math. 23(1), 3–19 (1997)
Brenner S.C.: Multigrid methods for parameter dependent problems. RAIRO, Modelisation Math. Anal. Numer. 30, 265–297 (1996)
Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)
Brezzi F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. R.A.I.R.O. 8, 129–151 (1974)
Dreyer T., Maar B., Schulz V.: Multigrid optimization in applications. J. Comput. Appl. Math. 120(1–2), 67–84 (2000)
Hackbusch W.: Fast solution of elliptic control problems. J. Optim. Theory Appl. 31, 565–581 (1980)
Hackbusch W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)
Hazra S.B., Schulz V.: Simultaneous pseudo-timestepping for PDE-model based optimization problems. BIT 44(3), 457–472 (2004)
Lions J.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)
Schöberl J., Zulehner W.: On Schwarz-type smoothers for saddle point problems. Numer. Math. 95, 377–399 (2003)
Schöberl J., Zulehner W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29(3), 752–773 (2007)
Ta’asan, S.: One-shot methods for optimal control of distributed parameter systems I: The finite dimensional case. ICASE-Report 91-2, NASA Langley Research Center, Hampton (1991)
Tröltzsch F.: Optimale Steuerung partieller Differentialgleichungen. Theorie, Verfahren und Anwendungen. Vieweg, Wiesbaden (2005)
Vanka S.: Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65, 138–158 (1986)
Wittum G.: Multi-grid methods for Stokes and Navier–Stokes equations. Transforming smoothers: Algorithms and numerical results. Numer. Math. 54(5), 543–563 (1988)
Wittum G.: On the convergence of multi-grid methods with transforming smoothers. Numer. Math. 57(1), 15–38 (1990)
Zulehner W.: A class of smoothers for saddle point problems. Computing 65, 227–246 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
The work was supported by the Austrian Science Fund (FWF) under grant SFB 013/F1309.
Rights and permissions
About this article
Cite this article
Simon, R., Zulehner, W. On Schwarz-type smoothers for saddle point problems with applications to PDE-constrained optimization problems. Numer. Math. 111, 445–468 (2009). https://doi.org/10.1007/s00211-008-0187-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-008-0187-1