iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00211-003-0483-8
Multiscale resolution in the computation of crystalline microstructure | Numerische Mathematik Skip to main content

Advertisement

Log in

Multiscale resolution in the computation of crystalline microstructure

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

This paper addresses the numerical approximation of microstructures in crystalline phase transitions without surface energy. It is shown that branching of different variants near interfaces of twinned martensite and austenite phases leads to reduced energies in finite element approximations. Such behavior of minimizing deformations is understood for an extended model that involves surface energies. Moreover, the closely related question of the role of different growth conditions of the employed bulk energy is discussed. By explicit construction of discrete deformations in lowest order finite element spaces we prove upper bounds for the energy and thereby clarify the question of the dependence of the convergence rate upon growth conditions and lamination orders. For first order laminates the estimates are optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100, 13–52 (1987)

    MathSciNet  Google Scholar 

  2. Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A~338, 389–450 (1992)

    Google Scholar 

  3. Bartels, S.: Numerical analysis of some non-convex variational problems. PhD- Thesis, Universität Kiel, 2001. Available at http://e-diss.uni-kiel.de/math-nat.html

  4. Belgacem, H.B., Conti, S., DeSimone, A., Müller, S.: Rigourous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10, 661–683 (2000)

    Article  Google Scholar 

  5. Carstensen, C., Plecháč, P.: Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66, 997–1026 (1997)

    Article  MathSciNet  Google Scholar 

  6. Carstensen, C., Roubíček, T.: Numerical approximation of young measures in non-convex variational problems. Numer. Math. 84, 395–415 (2000)

    MathSciNet  Google Scholar 

  7. Chipot, M., Collins, C.: Numerical approximations in variational problems with potential wells, SIAM J. Numer. Anal. 29, 1002–1019 (1992)

    MathSciNet  Google Scholar 

  8. Chipot, M.: The appearance of microstructures in problems with incompatible wells and their numerical approach. Numer. Math. 83, 325–352 (1999)

    Article  MathSciNet  Google Scholar 

  9. Chipot, M., Collins, C., Kinderlehrer, D.: Numerical analysis of oscillations in multiple well problems. Numer. Math. 70, 259–282 (1995)

    Article  MathSciNet  Google Scholar 

  10. Chipot, M., Müller, S.: Sharp energy estimates for finite element approximations of non-convex problems in: Variations of domain and free-boundary problems in solid mechanics (Paris),~pp. 317–325 (1997)

  11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978

  12. Matthias, G.K., Prohl, A.: A discontinuous finite element method for solving a multi-well problem. SIAM J. Numer. Anal. 37, 246–268 (1999)

    Article  Google Scholar 

  13. Kohn, R.V., Müller, S.: Branching of twins near an austenite/twinned martensite interface. Phil. Mag. 66A, 697–715 (1994)

    Google Scholar 

  14. Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47, 405–435 (1994)

    MathSciNet  Google Scholar 

  15. Kružík, M.: Numerical approach to double well problems. SIAM J. Numer. Anal. 35, 1833–1849 (1998)

    Article  Google Scholar 

  16. Li, B.: Finite element analysis of a class of stress-free martensitic microstructures. Math. Comp., 2002. In press

  17. Li, B., Luskin, M.: Nonconforming Finite element approximation of crystalline microstructure. Math. Comp. 67, 917–946 (1998)

    Article  MathSciNet  Google Scholar 

  18. Li, B., Luskin, M.: Theory and computation for the microstructure near the interface between twinned layers and a pure variant of martensite. Mat. Sci. Eng. A, 273–275, 237–240 (1999)

    Google Scholar 

  19. Luskin, M.: Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Numer. Math. 75, 205–221 (1997)

    Article  Google Scholar 

  20. Luskin, M.: On the computation of crystalline microstructure. Acta Numerica, 1996

  21. Müller, S.: Variational models for microstructure and phase transitions. Springer. Lect. Notes Math. 1713, 85–210 (1999)

    Google Scholar 

  22. Pedregal, P.: On the numerical analysis of nonconvex variational problems. Num. Math. 74, 325–336 (1996)

    Article  MathSciNet  Google Scholar 

  23. Prohl, A.: An adaptive finite element method for solving a double well problem describing crystalline microstructure. M2AN 33, 781–796 (1999)

    Google Scholar 

  24. Shield, T.W.: Needles in Martensites. www.aem.umn.edu/people/faculty/shield/ needles

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Prohl.

Additional information

Mathematics Subject Classification (2000): 65K10, 65M50, 65N30, 73C50, 73S10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartels, S., Prohl, A. Multiscale resolution in the computation of crystalline microstructure. Numer. Math. 96, 641–660 (2004). https://doi.org/10.1007/s00211-003-0483-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0483-8

Keywords

Navigation