Abstract.
Aim of this work is to investigate from a proof-theoretic viewpoint a propositional and a predicate sequent calculus with an ω–type schema of inference that naturally interpret the propositional and the predicate until–free fragments of Linear Time Logic LTL respectively. The two calculi are based on a natural extension of ordinary sequents and of standard modal rules. We examine the pure propositional case (no extralogical axioms), the propositional and the first order predicate cases (both with a possibly infinite set of extralogical axioms). For each system we provide a syntactic proof of cut elimination and a proof of completeness.
Similar content being viewed by others
References
Ambler, S., Kwiatkowska, M., Measor, N.: Duality and the completeness of modal μ–calculus. Theor. Comp. Sci. 151, 3–27 (1995)
Baratella, S., Masini, A.: A proof-theoretic investigation of a logic of positions. Ann. Pure Appl. Logic 123, 135–162 (2003)
Basin, D., Matthews, S., Viganò, L.: Labelled modal logics: quantifiers. J. Logic, Lang. Inf. 7–3, 237–263 (1998)
Cerrito, S., Cialdea Mayer, M.: Bounded model search in linear temporal logic and its application to planning. In: H. De Swart (ed.) Automated Resoning with Analytic Tableaux and Related Methods, Lec. Notes in Artificial Intelligence, 1937, (Springer, Berlin, 1998), pp. 141–152
Emerson, E.A.: Temporal and modal logic. In: J. van Leeuwen (ed.), Handbook of theoretical computer science. Vol. B: formal models and semantics (Elsevier, Amsterdam, 1990), pp. 995–1072
Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs as fixpoints. In: Proc. 7th Int. Colloq. Aut. Lang. Prog., Lec. Notes in Comp. Sci. 85, (Springer, Berlin, 1981), pp. 169–181
Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal logic: mathematical foundations and computational aspects. Vol. 1. (Oxford University Press, Oxford, 1994)
Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Proc. 7th ACM Symposium on Principles of Programming Languages (ACM Press, 1980), pp. 163–173
Garson, J.W.: Quantification in modal logic. In: D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol II (Reidel, Dordrecht, 1984), pp. 249–307
Girard, J.-Y.: Proof theory and logical complexity, vol. I (Bibliopolis, Napoli, 1987)
Guerrini, S., Martini, S., Masini, A.: An analysis of (linear) exponentials based on extended sequents. Logic J. IGPL, 6, 735–753 (1998)
Harel, D.: Dynamic Logic. In: Handbook of Philosophical Logic. Vol. II. Extensions of classical logic. D. Gabbay and F. Guenthner (eds.), Synthese Library 165, (D. Reidel Publishing Co., 1984), pp. 497–604
Kamp, J.: Tense logic and the theory of linear order. Ph.D Thesis, UCLA, USA 1968
Martini, S., Masini, A.: A computational interpretation of modal proofs. In: H. Wansing (ed.), Proof theory of modal logic, (Kluwer, 1996), pp. 213–241
Masini, A.: 2-sequent calculus: a proof theory of modalities. Ann. Pure Appl. Logic 58, 229–246 (1992)
Pnueli, A.: The temporal logic of programs. 18th Annual Symposium on Foundations of Computer Science (Providence, R.I., 1977), IEEE Comput. Sci., Long Beach, Calif, 1977, pp. 46–57
Reynolds, M.: An axiomatization of full computation tree logic. J. Symbolic Logic, 66–3, 1011–1057 (2001)
Schütte, K.: Proof theory, Translated from the revised German edition by J. N. Crossley. Grundlehren der Mathematischen Wissenschaften, Band 225. (Springer–Verlag, Berlin–New York, 1977)
Segerberg, K.: A model existence theorem in infinitary propositional modal logic. J. Philos. Log. 23–4, 337–367 (1994)
Sisla, A., Clarke, E.: The complexity of propositional linear temporal logic. J. ACM 32–3, 733–749 (1985)
Szalas, A.: A complete axiomatic characterization of first-order temporal logic of linear time. Theoret. Comput. Sci. 54–2-3, 199–214 (1987)
Szalas, A.: On natural deduction in first-order fixpoint logics. Fundamenta Informaticæ 26, 81–94 (1996)
Takeuti, G.: Proof theory (North-Holland, Amsterdam, 1975)
Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logic of programs. J. Comput. Sys. Sci. 32, 183–221 (1986)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by MIUR COFIN 02 ‘‘Teoria dei Modelli e Teoria degli Insiemi, loro interazioni ed applicazioni’’.
Supported by MIUR COFIN 02 ‘‘PROTOCOLLO’’.
Mathematics Subject Classification (2000):03B22, 03B45, 03F05
Rights and permissions
About this article
Cite this article
Baratella, S., Masini, A. An approach to infinitary temporal proof theory. Arch. Math. Logic 43, 965–990 (2004). https://doi.org/10.1007/s00153-004-0237-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-004-0237-z