Abstract
The study of heart sound signals is considered a helpful approach for monitoring heart diseases and for assessing heart hemodynamic condition. In fact, several cardiac disorders are tangible in heart sound signal characteristics such as intensity, time relations and spectral content. To assist cardiologists in cardiovascular pathology screening and prevention, a computer-aided system able to segment and classify phonocardiogram records is proposed. After the detection of the fundamental heart sounds, systole and diastole, various features are extracted and a correlation analysis for avoiding redundancy and for quantify the feature discrimination capacity is made. The performance of the conceived system is evaluated considering the accuracy, the sensitivity and the specificity in classifying heart sound signals as normal or abnormal and is tested adopting the entire collection of records provided by the PhysioNet/CinC Challenge 2016 database. The obtained results show the method ability to aid the interpretation of specialists during their clinical practice.
Similar content being viewed by others
References
M. Abdollahpur, A. Ghaffari, S. Ghiasi, M.J. Mollakazemi, Detection of pathological heart sounds. Physiol. Meas. 38(8), 161–1630 (2017). https://doi.org/10.1088/1361-6579/aa7840
Z. Abduha, E.A. Nehary, M.A. Waheda, Y.M. Kadah, Classification of heart sounds using fractional Fourier transform based Mel-frequency spectral coefficients and traditional classifiers. Biomed. Signal Process. Control (2020). https://doi.org/10.1016/j.bspc.2019.101788
E.N. Arunkumar, A.F. Hussein, M. Solarte, G. Ramirez-Gonzales, Spectral fault recovery analysis revisited with normal and abnormal heart sound signals. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2876119
A.N. Caleb, B. Roda, Modern-day cardiac auscultatory teaching and its role alongside echocardiography. BC Med. J. 61, 128–130 (2019)
J.F. Chen, X. Dang, Heart sound analysis based on extended features and related factors, in 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (2019). https://doi.org/10.1109/SSCI44817.2019.9003008
T.E. Chen, S.I. Yang, L.T. Ho, K.H. Tsai, Y.H. Chen, Y.F. Chang, Y.H. Lai, S.S. Wang, Y. Tsao, C.C. Wu, S1 and S2 heart sound recognition using deep neural networks. IEEE Trans. Biomed. Eng. (2017). https://doi.org/10.1109/TBME.2016.2559800
T.H. Chowdhury, K.N. Poudel, Y. Hu, Time-frequency analysis, denoising, compression, segmentation, and classification of PCG signals. IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.3020806
G.D. Clifford, C. Liu, B. Moody, J. Millet, S. Schmidt, Q. Li, I. Silva, R.G. Mark, Recent advances in heart sound analysis. Physiol. Meas. (2017). https://doi.org/10.1088/1361-6579/aa7ec8
M. D’Aloia, A. Longo, M. Rizzi, Noisy ECG signal analysis for automatic peak detection. Information (2019). https://doi.org/10.3390/info10020035
M. D'Aloia, A. Longo, R. Russo, S. Stanisci, D. Amendolare, M. Rizzi, M. Vessia, F. Lomastro, An innovative LPWA network scheme to increase system reliability in remote monitoring, in 2017 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) (2017). https://doi.org/10.1109/EESMS.2017.8052684
M. Deng, T. Meng, J. Cao, S. Wang, J. Zhang, H. Fan, Heart sound classification based on improved MFCC features and convolutional recurrent neural networks. Neural Netw. (2020). https://doi.org/10.1016/j.neunet.2020.06.015
S.W. Deng, J.Q. Han, Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps. Futur. Gener. Comput. Syst. (2016). https://doi.org/10.1016/j.future.2016.01.010
P. Dhar, S. Dutta, V. Mukherjee, Cross-wavelet assisted convolution neural network (AlexNet) approach for phonocardiogram signals classification. Biomed. Signal Process. Control (2021). https://doi.org/10.1016/j.bspc.2020.102142
A. Giorgio, M. Rizzi, C. Guaragnella, Efficient detection of ventricular late potentials on ECG signals based on wavelet denoising and SVM classification. Information (2019). https://doi.org/10.3390/info10110328
A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation (2000). https://doi.org/10.1161/01.cir.101.23.e215
C. Guaragnella, M. Rizzi, A. Giorgio, Marginal component analysis of ECG signals for beat-to-beat detection of ventricular late potentials. Electronics (2019). https://doi.org/10.3390/electronics8091000
C. Guaragnella, M. Rizzi, Simple and accurate border detection algorithm for melanoma computer aided diagnosis. Diagnostics (2020). https://doi.org/10.3390/diagnostics10060423
A. Had, K. Sabri, M. Aoutoul, Detection of heart valves closure instants in phonocardiogram signals. Wirel. Pers. Commun. (2020). https://doi.org/10.1007/s11277-020-07116-5
M.E. Karar, S.H. El-Khafif, M.A. El-Brawany, Automated diagnosis of heart sounds using rule-based classification tree. J. Med. Syst. (2017). https://doi.org/10.1007/s10916-017-0704-9
J. Kaushik, A. Misal, Segmentation of phonocardiograms signal. Int. J. Eng. Res. Adv. Technol. (2018). https://doi.org/10.31695/IJERAT.2018.3284
P.T. Krishnan, P. Balasubramanian, S. Umapathy, Automated heart sound classification system from unsegmented phonocardiogram (PCG) using deep neural network. Phys. Eng. Sci. Med. (2020). https://doi.org/10.1007/s13246-020-00851-w
M. Lam, T. Lee, P. Boey, W. Ng, H. Hey, K. Ho, P. Cheong, Factors influencing cardiac auscultation proficiency in physician trainees. Singapore Med. J. 46(1), 11–14 (2005)
F. Li, H. Tang, S. Shang, K. Mathiak, F. Cong, Classification of heart sounds using convolutional neural network. Appl. Sci. (2020). https://doi.org/10.3390/app10113956
J. Li, L. Ke, Q. Du, X. Ding, X. Chen, D. Wang, Heart sound signal classification algorithm: a combination of wavelet scattering transform and twin support vector machine. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2959081
J. Li, L. Ke, Q. Du, Classification of heart sounds based on the wavelet fractal and twin support vector machine. Entropy (2019). https://doi.org/10.3390/e21050472
C. Liu, D. Springer, Q. Li, B. Moody, R.A. Juan, F.J. Chorro, F. Castells, J.M. Roig, I. Silva, A.E. Johnson, Z. Syed, S.E. Schmidt, C.D. Papadaniil, L. Hadjileontiadis, H. Naseri, A. Moukadem, A. Dieterlen, C. Brandt, H. Tang, M. Samieinasab, M.R. Samieinasab, R. Sameni, R.G. Mark, G.D. Clifford, An open access database for the evaluation of heart sound algorithms. Physiol. Meas. (2016). https://doi.org/10.1088/0967-3334/37/12/2181
A. Longo, M. Rizzi, D. Amendolare, S. Stanisci, R. Russo, G. Cice, M. D'Aloia, Localization and monitoring system based on BLE fingerprint method, in CEUR Workshop Proceedings—Workshop on Artificial Intelligence with Application in Health (WAIAH 2017), vol. 1982 (2017), pp. 33–39
P. Lubaib, K.V. Ahammed Muneer, The heart defect analysis based on PCG signals using pattern recognition techniques. Procedia Technol. (2016). https://doi.org/10.1016/j.protcy.2016.05.225
A. Moukadem, A. Dieterlen, N. Hueber, C. Brandt, A robust heart sounds segmentation module based on S-transform. Biomed. Signal Process. Control (2013). https://doi.org/10.1016/j.bspc.2012.11.008
V. Nivitha Varghees, K.I. Ramachandran, Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope. IEEE Sens. J. (2017). https://doi.org/10.1109/JSEN.2017.2694970
D.M. Nogueira, C.A. Ferreira, E.F. Gomes, A.M. Jorge, Classifying heart sounds using images of motifs, MFCC and temporal features. J. Med. Syst. (2019). https://doi.org/10.1007/s10916-019-1286-5
F. Noman, S. Salleh, C. Ting, S.B. Samdin, H. Ombao, H. Hussain, A Markov-switching model approach to heart sound segmentation and classification. IEEE J. Biomed. Health Inform. (2020). https://doi.org/10.1109/JBHI.2019.2925036
J. Oliveira, T. Mantadelis, F. Renna, P. Gomes, M. Coimbra, On modifying the temporal modeling of HSMMs for pediatric heart sound segmentation, in 2017 IEEE International Workshop on Signal Processing Systems (SiPS) (2017). https://doi.org/10.1109/SiPS.2017.8110004
J. Oliveira, F. Renna, M.T. Coimbra, Adaptive sojourn time HSMM for heart sound segmentation. IEEE J. Biomed. Health Inform. (2019). https://doi.org/10.1109/JBHI.2018.2841197
İ. Özkan, A. Yilmaz, G. Çelebı, Hybrid segmentation algorithm using Mel-frequency cepstrum and wavelet transform for phonocardiography records, in 27th Signal Processing and Communications Applications Conference (SIU) (2019). https://doi.org/10.1109/SIU.2019.8806586
M. Palinka, G. De Luca Canto, L.A. Rodrigues, C. Bataglion, S. Siéssere, M. Semprini, S.C. Regalo, The real role of sensitivity, specificity and predictive values in the clinical assessment. J. Clin. Sleep Med. (2016). https://doi.org/10.5664/jcsm.5506
Z. Ren, N. Cummins, V. Pandit, J. Han, K. Qian, B. Schuller, Learning image-based representations for heart sound classification, in 2018 International Conference on Digital Health (DH’18) (2018). https://doi.org/10.1145/3194658.3194671
F. Renna, J. Oliveira, M.T. Coimbra, Deep convolutional neural networks for heart sound segmentation. IEEE J. Biomed. Health Inform. (2019). https://doi.org/10.1109/JBHI.2019.2894222
M. Rizzi, M. Daloia, G. Cice, Computer aided evaluation (CAE) of morphologic changes in pigmented skin lesions, in New Trends in Image Analysis and Processing-ICIAP 2015 Workshops. Lecture Notes in Computer Science, vol. 9281, ed. by V. Murino, E. Puppo, D. Sona, M. Cristani, C. Sansone (Springer, Cham, 2015), pp. 250–257. https://doi.org/10.1007/978-3-319-23222-5_31
M. Rizzi, M. D’Aloia, A. Longo, Digital watermarking for healthcare: a survey of ECG watermarking methods in telemedicine. Int. J. Comput. Sci. Eng. (2020). https://doi.org/10.1504/IJCSE.2020.111432
M. Rizzi, M. D’Aloia, Computer aided system for breast cancer diagnosis. Biomed. Eng. Appl. Basis Commun. (2014). https://doi.org/10.4015/S1016237214500331
M. Rizzi, C. Guaragnella, Skin lesion segmentation using image bit-plane multilayer approach. Appl. Sci. (2020). https://doi.org/10.3390/app10093045
D.S.V. Sankar, L.P. Roy, Principal component analysis (PCA) approach to segment primary components from pathological phonocardiogram, in 2014 International Conference on Communication and Signal Processing (2014). https://doi.org/10.1109/ICCSP.2014.6949976
P. Sharma, S.A. Imtiaz, E. Rodriguez-Villegas, An algorithm for heart rate extraction from acoustic recordings at the neck. IEEE Trans. Biomed. Eng. (2019). https://doi.org/10.1109/TBME.2018.2836187
K. Shi, S. Schellenberger, F. Michler, T. Steigleder, A. Malessa, F. Lurz, C. Ostgathe, R. Weigel, A. Koelpin, Automatic signal quality index determination of radar-recorded heart sound signals using ensemble classification. IEEE Trans. Biomed. Eng. (2020). https://doi.org/10.1109/TBME.2019.2921071
V. Singh, R.R. Watson, Lifestyle features and heart disease, in Lifestyle in Heart Health and Disease. ed. by R.R. Watson, S. Zibadi (Academic Press, London, 2018), pp. 223–226. https://doi.org/10.1016/B978-0-12-811279-3.00017-3
S.A. Singh, S. Majumder, Short unsegmented PCG classification based on ensemble classifier. Turk. J. Electr. Eng. Comput. Sci. (2020). https://doi.org/10.3906/elk-1905-165
S.A.J. Singh, T.G. Meiteia, S. Majumder, Short PCG classification based on deep learning, in Deep Learning Techniques for Biomedical and Health Informatics. ed. by B. Agarwal, V. Balas, L. Jain, R. Poonia, M. Sharma (Elsevier, New York, 2020). https://doi.org/10.1016/B978-0-12-819061-6.00006-9
S.L. Strunic, F. Rios-Gutierrez, R. Alba-Flores, G. Nordehn, S. Burns, Detection and classification of cardiac murmurs using segmentation techniques and artificial neural networks, in 2007 IEEE Symposium on Computational Intelligence and Data Mining (2007), pp. 397–404
V.G. Sujadevi, K.P. Soman, R. Vinayakumar, A.U. Prem Sankar, Deep models for phonocardiography (PCG) classification, in 2017 International Conference on Intelligent Communication and Computational Techniques (ICCT) (2017). https://doi.org/10.1109/INTELCCT.2017.8324047]
H. Tang, Z. Dai, Y. Jiang, T. Li, C. Liu, PCG classification using multidomain features and SVM classifier. Biomed. Res. Int. (2018). https://doi.org/10.1155/2018/420502
R. Trevethan, Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front. Public Health (2017). https://doi.org/10.3389/fpubh.2017.00307
K.J. van Stralen, V.S. Stel, J.B. Reitsma, F.W. Dekker, C. Zoccali, K.J. Jage, Diagnostic methods I: sensitivity, specificity, and other measures of accuracy. Kidney Int. (2009). https://doi.org/10.1038/ki.2009.92
B. Xiao, Y. Xua, X. Bi, J. Zhang, X. Mac, Heart sounds classification using a novel 1-D convolutional neural network with extremely low parameter consumption. Neurocomputing (2020). https://doi.org/10.1016/j.neucom.2018.09.101
A. Yadav, M.K. Dutta, C.M. Travieso, J.B. Alonso, Automatic classification of normal and abnormal PCG recording heart sound recording using Fourier transform, in 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI) (2018). https://doi.org/10.1109/IWOBI.2018.8464131
W. Zhang, J. Han, S. Deng, Heart sound classification based on scaled spectrogram and tensor decomposition. Expert Syst. Appl. (2017). https://doi.org/10.1016/j.eswa.2017.05.014
W. Zhang, J. Han, Towards heart sound classification without segmentation using convolutional neural network, in 2017 Computing in Cardiology (CinC) (2017). https://doi.org/10.22489/CinC.2017.254-164
Funding
The research was supported by Politecnico di Bari—FRA.
Author information
Authors and Affiliations
Contributions
Authors have contributed to the paper in equal measure.
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare no conflict of interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Giorgio, A., Guaragnella, C. & Rizzi, M. An Effective CAD System for Heart Sound Abnormality Detection. Circuits Syst Signal Process 41, 2845–2870 (2022). https://doi.org/10.1007/s00034-021-01916-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-021-01916-1