iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/S00034-015-0165-7
$$H_\infty $$ Control and $$\varepsilon $$ -Bound Estimation of Discrete-Time Singularly Perturbed Systems | Circuits, Systems, and Signal Processing Skip to main content
Log in

\(H_\infty \) Control and \(\varepsilon \)-Bound Estimation of Discrete-Time Singularly Perturbed Systems

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers the problems of \(H_\infty \) control and \(\varepsilon \)-bound estimation of discrete-time singularly perturbed systems. A set of well-defined conditions for the existence of state feedback controllers are proposed, under which the resulting closed-loop system is asymptotically stable while satisfying a prescribed \(H_\infty \) norm bound when the singular perturbation parameter \(\varepsilon \) is lower than a pre-defined upper bound. It is shown that the proposed controller design method is less conservative than the existing ones. Furthermore, a method of estimating the \(\varepsilon \)-bound is proposed, which leads to less conservative results and requires lower computational burden than the existing methods for a wide class of singularly perturbed systems. Finally, examples are given to show the advantages and effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Asemani, M.J. Yazdanpanah, V.J. Majd, A. Golabi, \(H_\infty \) control of TS fuzzy singularly perturbed systems using multiple lyapunov functions. Circuits Syst. Signal Process. 32(5), 2243–2266 (2013)

    Article  MathSciNet  Google Scholar 

  2. W. Assawinchaichote, S.K. Nguang, P. Shi, \(H_\infty \) output feedback control design for uncertain fuzzy singularly perturbed systems: an LMI approach. Automatica 40(12), 2147–2152 (2004)

    MathSciNet  MATH  Google Scholar 

  3. W. Assawinchaichote, S.K. Nguang, Fuzzy \(H_\infty \) output feedback control design for singularly perturbed systems with pole placement constraints: an LMI approach. IEEE Trans. Fuzzy Syst. 14(3), 361–371 (2006)

    Article  Google Scholar 

  4. X. Chen, M. Heidarinejad, J. Liu, P.D. Christofides, Composite fast-slow MPC design for nonlinear singularly perturbed systems. AIChE Journal 58(6), 1802–1811 (2012)

    Article  Google Scholar 

  5. V. Dragan, H. Mukaidani, P. Shi, The linear quadratic regulator problem for a class of controlled systems modeled by singularly perturbed Ito differential equations. SIAM J. Control Optim. 50(1), 448–470 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. K.B. Datta, A. RaiChaudhuri, \(H_2/H_{\infty }\) control of discrete singularly perturbed systems: the state feedback case. Automatica 38(10), 1791–1797 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Dong, G.H. Yang, Robust \(H_{\infty }\) control for standard discrete-time singularly perturbed systems. IET Control Theory Appl. 1(4), 1141–1148 (2007)

    Article  MathSciNet  Google Scholar 

  8. J. Dong, G.H. Yang, \(H_{\infty }\) control for fast sampling discrete-time singularly perturbed systems. Automatica 44(5), 1385–1393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Fridman, A descriptor system approach to nonlinear singularly perturbed optimal control problem. Automatica 37(4), 543–549 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Gahinet, P. Apkarian, A linear matrix inequality approach to \(H_{\infty }\) control. Int. J. Robust Nonlinear Control 4(4), 421–448 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. P.V. Kokotovic, H.K. Khalil, J. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design (Academic, New York, 1986)

    MATH  Google Scholar 

  12. E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications (Kluwer, Dordrecht, The Netherlands, 2002)

    Book  MATH  Google Scholar 

  13. R.Q. Lu, H.B. Zou, H.Y. Su, J. Chu, A.K. Xue, Robust D-stability for a class of complex singularly perturbed systems. IEEE Trans. Circuits Syst. II-Express Briefs 55(12), 1294–1298 (2008)

    Article  Google Scholar 

  14. T.H.S. Li, K.J. Lin, Composite fuzzy control of nonlinear singularly perturbed systems. IEEE Trans. Fuzzy Syst. 15(2), 176–187 (2007)

    Article  Google Scholar 

  15. H. Li, C. Wu, P. Shi, Y. Gao, Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Transactions on Cybernetics (2014). doi:10.1109/TCYB.2014.2371814

  16. H. Li, Z. Sun, L. Wu, H. Lam, State and output feedback control of a class of fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2014.2387876

  17. H. Li, C. Wu, L. Wu, H.K. Lam, Y. Gao, Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. (2015). doi:10.1109/TCYB.2015.2413134

  18. B. Litkouhi, H. Khalil, Multirate and composite control of two-time-scale discrete-time systems. IEEE Trans. Autom. Control 30(7), 645–651 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Mei, C. Cai, Y. Zou, A generalized KYP lemma-based approach for \(H_\infty \) control of singularly perturbed systems. Circuits Syst. Signal Process. 28(6), 945–957 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. S.K. Nguang, W. Assawinchaichote, P. Shi, Robust \(H_{\infty }\) control design for fuzzy singularly perturbed systems with Markovian jumps: an LMI approach. IET Control Theory Appl. 1(4), 893–908 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Nguyen, W.C. Su, Z. Gajic, Variable structure control for singularly perturbed linear continuous systems with matched disturbances. IEEE Trans. Autom. Control 57(3), 777–783 (2012)

    Article  MathSciNet  Google Scholar 

  22. K.S. Park, J.T. Lim, Exponential stability of singularly perturbed discrete systems with time-delay. Int. J. Innov. Comput. Inf. Control 9(2), 865–874 (2013)

    MathSciNet  Google Scholar 

  23. Z. Pan, T. Basar, \(H_{\infty }-\)optimal control for singularly perturbed systems-part I: perfect state measurements. Automatica 29(2), 401–423 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. S.J. Pan, J.S.H. Tsai, S.T. Pan, Application of genetic algorithm on observer-based D-stability control for discrete multiple time-delay singularly perturbation systems. Int. J. Innov. Comput. Inf. Control 7(6), 3345–3358 (2011)

    Google Scholar 

  25. Z. Pan, T. Basar, \(H_{\infty }-\)optimal control for singularly perturbed systems-part I: imperfect state measurements. IEEE Trans. Autom. Control 39(2), 280–299 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Shi, V. Dragan, Asymptotic \(H_{\infty }\) control of singularly perturbed systems with parametric uncertainties. IEEE Trans. Autom. Control 44(9), 1738–1742 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Song, M.F. Rahman, K.W. Lim, M.A. Rahman, A singular perturbation approach to sensorless control of a permanent magnet synchronous motor drive. IEEE Trans. Energy Convers. 14(4), 1359–1365 (1999)

    Article  Google Scholar 

  28. W. Tan, T. Leung, Q. Tu, \(H_{\infty }\) control for singularly perturbed systems. Automatica 34(2), 255–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. T.V. Vu, M.E. Sawan, \(H_{\infty }\) control for singularly perturbed sampled data systems. In Proceedings-IEEE International Symposium on Circuits and Systems, Chicago, IL, 1993, pp. 2506–2509

  30. W. Wang, A.R. Teel, D. Nešić, Analysis for a class of singularly perturbed hybrid systems via averaging. Automatica 48(6), 1057–1068 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Wang, Q. Zhang, V. Sreeram, \(H_{\infty }\) control for discrete-time singularly perturbed systems with two Markov processes. J. Frankl. Inst. 347(5), 836–847 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Xu, G. Feng, New results on \(H_{\infty }\) control of discrete singularly perturbed systems. Automatica 45(10), 2339–2343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. G.H. Yang, J.X. Dong, Control synthesis of singularly perturbed fuzzy systems. IEEE Trans. Fuzzy Syst. 16(3), 615–629 (2008)

    Article  MathSciNet  Google Scholar 

  34. C. Yang, Q. Zhang, L. Zhou, Stability Analysis and Design for Nonlinear Singular Systems (Springer, Berlin Heidelberg, 2013)

    Book  MATH  Google Scholar 

  35. C. Yang, Q. Zhang, Multi-objective control for T–S fuzzy singularly perturbed systems. IEEE Trans. Fuzzy Syst. 17(1), 104–115 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Yang.

Additional information

This work was supported by the National Natural Science Foundation of China (61374043), the Jiangsu Provincial Natural Science Foundation of China (BK20130205), the China Postdoctoral Science Foundation funded project (2013M530278, 2014T70558), the Fundamental Research Funds for the Central Universities (2013QNA50, 2013RC10, 2013RC12, 2013XK09) and the Natural Science Foundation of Liaoning Province (201202201). The original and a shortened version of this work was presented at the 28th youth academic conference of Chinese Association of Automation, April 26–28, 2013, Hefei, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhou, L. \(H_\infty \) Control and \(\varepsilon \)-Bound Estimation of Discrete-Time Singularly Perturbed Systems. Circuits Syst Signal Process 35, 2640–2654 (2016). https://doi.org/10.1007/s00034-015-0165-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0165-7

Keywords

Navigation