Abstract
We consider the motion planning problem for a point constrained to move along a smooth closed convex path of bounded curvature. The workspace of the moving point is bounded by a convex polygon with m vertices, containing an obstacle in a form of a simple polygon with n vertices. We present an O(m+n) time algorithm finding the path, going around the obstacle, whose curvature is the smallest possible.
This work has been supported in part by the ESPRIT Basic Research Actions Nr. 7141 (ALCOM II) and Nr. 6546 (PROMotion), NSERC, FCAR and FODAR.
Preview
Unable to display preview. Download preview PDF.
References
A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom., 4:591–604, 1989.
J. Canny, B. R. Donald, J. Reif, and P. Xavier. On the complexity of kinodynamic planning. In Proc. 29th Annu. IEEE Sympos. Found. Comput. Sci., pages 306–316, 1988.
L. E. Dubins. On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. Amer. J. Math., 79:497–516, 1957.
S. Fortune and G. Wilfong. Planning constrained motion. In Proc. 20th Annu. ACM Sympos. Theory Comput., pages 445–459, 1988.
P. Jacobs and J. Canny. Planning smooth paths for mobile robots. In Proc. IEEE Internat. Conf. Robot. Autom., pages 2–7, 1989.
D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12:28–35, 1983.
J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.
C. Ó'Dúnlaing. Motion-planning with inertial constraints. Algorithmica, 2:431–475, 1987.
M. H. Overmars. A random approach to motion planning. Report RUU-CS-92-32, Dept. Comput. Sci., Univ. Utrecht, Utrecht, Netherlands, 1992.
F. P. Preparata. The medial axis of a simple polygon. In Proc. 6th Internat. Sympos. Math. Found. Comput. Sci., volume 53 of Lecture Notes in Computer Science, pages 443–450. Springer-Verlag, 1977.
J. H. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In Proc. 26th Annu. IEEE Sympos. Found. Comput. Sci., pages 144–154, 1985.
J. T. Schwartz and M. Sharir. Algorithmic motion planning in robotics. In J. van Leeuwen, editor, Algorithms and Complexity, volume A of Handbook of Theoretical Computer Science, pages 391–430. Elsevier, Amsterdam, 1990.
P. Švestka. A probabilistic approach to motion planning for car-like robots. Report RUU-CS-93-18, Dept. Comput. Sci., Univ. Utrecht, Utrecht, Netherlands, 1993.
G. Wilfong. Motion planning for an autonomous vehicle. In Proc. IEEE Internat. Conf. Robot. Autom., pages 529–533, 1988.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boissonnat, JD., Czyzowicz, J., Devillers, O., Robert, JM., Yvinec, M. (1994). Convex tours of bounded curvature. In: van Leeuwen, J. (eds) Algorithms — ESA '94. ESA 1994. Lecture Notes in Computer Science, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049413
Download citation
DOI: https://doi.org/10.1007/BFb0049413
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58434-6
Online ISBN: 978-3-540-48794-4
eBook Packages: Springer Book Archive