iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/BFB0029486
Knowledge refinement of an expert system using a symbolic-connectionist approach | SpringerLink
Skip to main content

Knowledge refinement of an expert system using a symbolic-connectionist approach

  • Hybrid and Cooperative Systems
  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1211))

Included in the following conference series:

  • 132 Accesses

Abstract

In this paper we have shown how to solve a real connectionist learning problem with a symbolic interpretation for the refinement of scoring systems and risk evaluation systems. This is a significant issue not easily manageable by classical symbolic methods [1] that are specially oriented to static domains. This has lead us to implement a symbolic-connectionist approach which combines the efficiency of connectionist learning with the comprehensibility of symbolic methods.

The network structure combines a linear part that does the same additions as physicians do to determine the weighted contributions of input variables and a non-linear transformation that determine the punctuation levels. The output units represent the scoring levels and they can be interpreted in a symbolic way. The system is currently validated with more real data, and it is being used to refine the scoring and risk evaluation systems of other hospitals by training the net with a set of local patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 1988.

    Google Scholar 

  2. Edwall F.C., The knee society total knee arthroplasty roentgenographic evaluation and scoring system. Clinical Orthopaedics, (248):9–12, 1989.

    Google Scholar 

  3. L.M. Fu. Knowledge-based connectionism for revising domain theories. IEEE Transactions on Systems, Man and Cybernetics, 23(1):173–182, 1993.

    Google Scholar 

  4. J. Heras and R.P. Otero. TKR-tool: An expert system for total knee replacement management. Artificial Intelligence in Medicine Europe. Lecture Notes in Artificial Intelligence, (934):444–446, 1995.

    Google Scholar 

  5. Insall J.N., Dorr D.D., Scott R.D., and Scott W.N., Rationale of the knee society clinical rating system. Clinical Orthopaedics, (248):13–14, 1989.

    Google Scholar 

  6. R. P. Otero, D. Lorenzo, and P. Cabalar. Applying induction in temporal expert systems. IJCAI-Workshop on Data Engineering for Inductive Learning, 1995.

    Google Scholar 

  7. D.E Rumelhart, G.E. Hinton, and R.J. Willians. Learning internal representations by error propagation. Parallel Distributed Processing, Explorations in the Microestructure of Cognition, MIT Press, Cambridge, 1:318–362, 1986.

    Google Scholar 

  8. J. Santos, R.P. Otero, and J. Mira. Nettool: A hydrid connectionist-symbolic development environment. From Natural to Artificial Neural Computation, J. Mira and F. Sandoval (Eds.), Lecture Notes in Computer Science, (930):658–665, 1995.

    Google Scholar 

  9. G. Towell and J.W. Shavlik. Refining symbolic knowledge using neural networks. In Machine Learning, A Multistrategy Approach, volume 4, chapter 15, pages 405–429. Morgan Kauffman Publishers, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elpida Keravnou Catherine Garbay Robert Baud Jeremy Wyatt

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santos, J., Lorenzo, D., Gomez, S., Heras, J., Otero, R.P. (1997). Knowledge refinement of an expert system using a symbolic-connectionist approach. In: Keravnou, E., Garbay, C., Baud, R., Wyatt, J. (eds) Artificial Intelligence in Medicine. AIME 1997. Lecture Notes in Computer Science, vol 1211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029486

Download citation

  • DOI: https://doi.org/10.1007/BFb0029486

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62709-8

  • Online ISBN: 978-3-540-68448-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics