iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/BFB0014683
Semantics of nondeterministic and noncontinuous constructs | SpringerLink
Skip to main content

Semantics of nondeterministic and noncontinuous constructs

  • IV. Special Language Considerations And Formal Tools
  • Chapter
  • First Online:
Program Construction

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 69))

Abstract

The semantics of the nondeterministic and noncontinuous constructs of the descriptive and applicative parts of the wide spectrum language CIP-L is given by defining both, a "breadth-function", characterizing the sets of possible values of ambiguous expressions, and a "definedness-predicate", indicating for such expressions whether all possible evaluations lead to defined values. With the help of the Egli-Milner ordering ambiguous, recursive functions are defined as fixpoints of functionals.

Using these concepts the meanings of quantifiers, ambiguous functions and expressions are based on a mathematical structure satisfying the axioms of two-valued classical logic and set theory.

This research was carried out within the Sonderforschungsbereich 49, Programmiertechnik, Munich".

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Ackermann: Die Widerspruchsfreiheit des Auswahlaxioms. Göttinger Wiss. Nachrichten, Math.-Phys. Klasse, 246–250, 1924

    Google Scholar 

  2. J. A. Goguen, J. W. Thatcher, E. G. Wagner: An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types. IBM Research Report RC — 6487, 1976

    Google Scholar 

  3. A. Arnold, M. Nivat: Non Deterministic Recursiv Schemes. Fundamentals of Computation Theory. Poznan 1977. Lecture Notes in Computer Science 56, 12–21, 1977

    Article  Google Scholar 

  4. A. Arnold: Schémas de programmes récursifs non déterministes avec appel "synchrone". Laboratoire de Calcul, Université des Sciences et Techniques de Lille, Publication NO 105, 1978

    Google Scholar 

  5. F. L. Bauer, H. Wössner, H. Partsch, P. Pepper: Algorithmische Sprachen. Vorlesungsskriptum, Technische Universität München 1977, Kap. 1

    Google Scholar 

  6. F. L. Bauer, M. Broy, R. Gnatz, W. Hesse, B. Krieg-Brückner H. Partsch, P. Pepper, H. Wössner: Towards a Wide Spectrum Language to Support Program Specification and Program Development. SIGPLAN Notices 13 (12), 15–24 (1978). See also this volume.

    Article  Google Scholar 

  7. F. L. Bauer: Prealgorithmic Formulations by Means of Choice and Determination. In: this volume.

    Google Scholar 

  8. R. M. Burstall, J. A. Goguen: Putting Theories Together to Make Specifications. Proc. of the Int. Joint Conf. on Artificial Intelligence 1977

    Google Scholar 

  9. J. W. de Bakker: Semantics and Termination of Nondeterministic Recursive Programs. 3rd International Colloquium on Automata, Languages and Programming, Edinburg, 1976

    MATH  Google Scholar 

  10. J. W. de Bakker: Semantics of Infinite Processes using generalized trees. Math. Foundations of Computer Sciences 1977, Tatrànska Lomnica. Lecture Notes in Computer Sciences 53, 240–247, 1977

    Article  Google Scholar 

  11. E. W. Dijkstra: Guarded Commands, Nondeterminacy and Formal Derivation of Programs. CACM 18, 453–457, 1975

    Article  MathSciNet  Google Scholar 

  12. R. W. Floyd: Nondeterministic Algorithms, JACM 14, 636–644, 1967

    Article  Google Scholar 

  13. J. V. Guttag: The Specification and Application to Programming of Abstract Data Types. Ph. D. Th., Univ. of Toronto, Dept. Comp. Sci., Rep. CSRG — 59, 1975

    Google Scholar 

  14. M. Hennessy, E. A. Aschroft: The Semantics of Nondeterminism. 3rd International Colloquium on Automata, Languages and Programming, Edinburg 1976

    Google Scholar 

  15. D. Hilbert: Die longischen Grundlagen der Mathematik. Math. Ann. 88, 151–165, 1923

    Article  Google Scholar 

  16. D. Hilbert: Die Grundlagen der Mathematik. Abh. math. Seminar d. Hamburger Universität VI, Heft 1/2.

    Google Scholar 

  17. T. J. Jech: The Axiom of Choice. North-Holland, Amsterdam, 68–71, 1973

    MATH  Google Scholar 

  18. S. C. Kleene: Introduction to Metamathematics. North-Holland, Amsterdam 1952

    MATH  Google Scholar 

  19. G. Kreisel, J. L. Krivine: Elements de logique mathématique. Dunod, Paris 1967

    MATH  Google Scholar 

  20. J. L. Krivine: Introduction to Axiomatic Set Theory. Reidel, Dordrecht 1971

    Book  Google Scholar 

  21. B. Liskov, S. Zilles: Specification Techniques for Data Abstraction. IEEE Trans. on Software Eng. 1:1, 7–18, 1975

    Article  Google Scholar 

  22. Z. Manna: Mathematical Theory of Computation. McGraw-Hill, New York 1974

    MATH  Google Scholar 

  23. J. McCarthy: A Basis for a Mathematical Theory of Computation. P. Braffort, D. Hirschberg (eds.) Computer Programming and Formal Systems. North-Holland, Amsterdam 1963

    Google Scholar 

  24. R. Milner: Processes: A Mathematical Model of Computing Agents. Logic Colloquium 73, North-Holland, Amsterdam 1973

    MATH  Google Scholar 

  25. H. Partsch, M. Broy: Examples for Change of Types and Object Structures. In: this volume.

    Google Scholar 

  26. P. Pepper: A Study on Transformational Semantics. In: this volume.

    Google Scholar 

  27. G. D. Plotkin: A Powerdomain Construction. SIAM J. on Computing 5, 452–486, 1976

    Article  MathSciNet  Google Scholar 

  28. K. Schütte: Einführung in die mathematische Logik. Vorlesungsausarbeitung, Universität München 1967

    Google Scholar 

  29. D. Scott: Continuous Lattices. Toposes, Algebraic Geometry and Logic. F. W. Lawvere, Ed., Springer-Verlag Notes, vol. 274, Berlin 1970

    Google Scholar 

  30. J. R. Shoenfield: Mathematical Logic. Addison-Wesley, Reading, Massachusetts 1967

    MATH  Google Scholar 

  31. M. B. Smyth: Power Domains. J. of Computer and System Sciences 16, 23–36, 1978

    Article  MathSciNet  Google Scholar 

  32. E. Zermelo: Beweis, daß jede Menge wohlgeordnet werde kann. Math. Ann. 59, 514–516, 1904

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Friedrich L. Bauer Manfred Broy E. W. Dijkstra S. L. Gerhart D. Gries M. Griffiths J. V. Guttag J. J. Horning S. S. Owicki C. Pair H. Partsch P. Pepper M. Wirsing H. Wössner

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Broy, M., Gnatz, R., Wirsing, M. (1979). Semantics of nondeterministic and noncontinuous constructs. In: Bauer, F.L., et al. Program Construction. Lecture Notes in Computer Science, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0014683

Download citation

  • DOI: https://doi.org/10.1007/BFb0014683

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09251-3

  • Online ISBN: 978-3-540-35312-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics