iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/BFB0014329
Programming in Lygon: An overview | SpringerLink
Skip to main content

Programming in Lygon: An overview

  • Conference
  • Conference paper
  • First Online:
Algebraic Methodology and Software Technology (AMAST 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1101))

Abstract

For many given systems of logic, it is possible to identify, via systematic proof-theoretic analyses, a fragment which can be used as a basis for a logic programming language. Such analyses have been applied to linear logic, a logic of resource-consumption, leading to the definition of the linear logic programming language Lygon. It appears that (the basis of) Lygon can be considered to be the largest possible first-order linear logic programming language derivable in this way. In this paper, we describe the design and application of Lygon. We give examples which illustrate the advantages of resource-oriented logic programming languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. J. Logic Computat. 2(3), 1992.

    Google Scholar 

  2. J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance. New Gen. Comp., 9:445–473, 1991.

    Google Scholar 

  3. A. Bonner and L. McCarty. Adding Negation-as-Failure to Intuitionistic Logic Programming. Proc. NACLP, 681–703, Austin, October, 1990.

    Google Scholar 

  4. N. Carriero and D. Gelernter. Linda in context. CACM, 32(4):444–458, 1989.

    Google Scholar 

  5. P. Dung. Hypothetical Logic Programming. Proc. 3rd. International Workshop on Extensions of Logic Programming 61–73, LNCS, Springer, 1992.

    Google Scholar 

  6. M. van Emden and R. Kowalski. The Semantics of Predicate Logic as a Programming Language. J.ACM 23:4:733–742, 1976.

    Google Scholar 

  7. J.-Y. Girard. Linear Logic. Theoret. Comp. Sci. 50, 1–102, 1987.

    Google Scholar 

  8. S. Hanks and D. MacDermott. Nonmonotonic Logic and Temporal Projection. Artif. Intell. 33:3:379–412, 1987.

    Google Scholar 

  9. J. Harland and D. Pym. A note on the implementation and applications of linear logic programming languages. Australian Computer Science Communications 16(1), 647–658, 1994.

    Google Scholar 

  10. J. Harland, D. Pym and M. Winikoff. Programming in Lygon: a system demonstration. This volume.

    Google Scholar 

  11. J. Hodas. Logic Programming in Intuitionistic Linear Logic: Theory, Design and Implementation. PhD thesis, University of Pennsylvania, 1994.

    Google Scholar 

  12. J. Hodas and D. Miller. Logic Programming in a Fragment of Intuitionistic Linear Logic. Inform. and Computat. 110:2:327–365, 1994.

    Google Scholar 

  13. S.C. Kleene. Mathematical Logic. Wiley and Sons, 1968.

    Google Scholar 

  14. N. Kobayash and A. Yonezawa. ACL — A Concurrent Linear Logic Programming Paradigm. Proc. ILPS'93, D. Miller (ed.), 279–294, MIT Press, 1993.

    Google Scholar 

  15. D. Miller. A multiple-conclusion metalogic. Proc. LICS'94, 272–281, IEEE, 1994.

    Google Scholar 

  16. D. Miller, G. Nadathur, F. Pfenning and A. Ščedrov. Uniform Proofs as a Foundation for Logic Programming. Ann. Pure Appl. Logic 51 (1991) 125–157.

    Google Scholar 

  17. D. Pym and J. Harland. A Uniform Proof-theoretic Investigation of Linear Logic Programming. J. Logic Computat. 4:2:175–207, 1994.

    Google Scholar 

  18. J. Vaghani, K. Ramamohanarao, D. Kemp, Z. Somogyi, P. Stuckey, T. Leask and J. Harland. The Aditi Deductive Database System. VLDB J. 3:2:245–288, 1994.

    Google Scholar 

  19. P. Volpe. Concurrent Logic Programming as Uniform Linear Proofs. In: G. Levi and M. Rodríguez-Artalejo (eds.), Algebraic and Logic Programming, 133–149. Springer, 1994.

    Google Scholar 

  20. D.S. Warren. Programming the PTQ Grammar in XSB. in Applications of Logic Databases, Raghu Ramakrishna (ed.), Kluwer Academic, 1994.

    Google Scholar 

  21. M. Winikoff. Lygon home page (subject to alteration). http://www.cs.mu.oz.au/∼winikoff/lygon/lygon.html.

    Google Scholar 

  22. M. Winikoff and J. Harland. Implementing the linear logic programming language Lygon. In: J. Lloyd (ed.), Proc. ILPS'95, 66–80, MIT Press, 1995.

    Google Scholar 

  23. M. Winikoff and J. Harland. Some applications of the linear logic programing language Lygon. Australian Computer Science Communications, 18(1), Kotagiri Romamohanarao (editor), 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Wirsing Maurice Nivat

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harland, J., Pym, D., Winikoff, M. (1996). Programming in Lygon: An overview. In: Wirsing, M., Nivat, M. (eds) Algebraic Methodology and Software Technology. AMAST 1996. Lecture Notes in Computer Science, vol 1101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0014329

Download citation

  • DOI: https://doi.org/10.1007/BFb0014329

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61463-0

  • Online ISBN: 978-3-540-68595-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics