iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/BFB0000070
The power of the Church-Rosser property for string rewriting systems | SpringerLink
Skip to main content

The power of the Church-Rosser property for string rewriting systems

  • Conference paper
  • First Online:
6th Conference on Automated Deduction (CADE 1982)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 138))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Berstel, Congruences plus que parfaites et langages algébrique, Séminaire d'Informatique Théorique (1976–77), Institut de Programmation, 123–147.

    Google Scholar 

  2. R. Book, Confluent and other types of Thue systems, J. Assoc. Comput. Mach. 29 (1982), 171–182.

    Google Scholar 

  3. R. Book, When is a monoid a group? The Church-Rosser case is tractable, Theoret. Comput. Sci. 18 (1982), to appear.

    Google Scholar 

  4. R. Book, M. Jantzen, and C. Wrathall, Monadic Thue systems, Theoret. Comput. Sci. 19 (1982), to appear.

    Google Scholar 

  5. R. Book and C. Ó'Dúnlaing, Testing for the Church-Rosser property, Theoret. Comput. Sci. 16 (1981), 223–229.

    Article  Google Scholar 

  6. Y. Cochet, Sur l'algébricité des classes de certaines congruences definies sur le monoide libre, Thèse 3e cycle, Rennes, 1971.

    Google Scholar 

  7. Y. Cochet and M. Nivat, Une generalization des ensembles de Dyck, Israel J. Math. 9 (1971), 389–395.

    Google Scholar 

  8. J. Hopcroft and J. Ullman, Formal Languages and Their Relation to Automata, Addison-Wesley, 1969.

    Google Scholar 

  9. G. Huet, Confluent reductions: abstract properties and applications to term-rewriting systems, J. Assoc. Comput. Mach. 27 (1980), 797–821.

    Google Scholar 

  10. G. Huet and D. Oppen, Equations and rewrite rules: a survey, in R. Book (ed.), Formal Language Theory: Perspectives and Open Problems, Academic Press, 1980, 349–405.

    Google Scholar 

  11. H. Hunt, D. Rosenkrantz, and T. Szymanski, On the equivalence, containment, and covering problems for the regular and contextfree languages, J. Comput. Syst. Sci. 12 (1976), 222–268.

    Google Scholar 

  12. M. Jantzen, On a special monoid with a single defining relation, Theoret. Comput. Sci 16 (1981), 61–73.

    Article  Google Scholar 

  13. D. Knuth and P. Bendix, Simple word problems in universal algebras, in J. Leech (ed.). Computational Problems in Abstract Algebra, Pergamon Press, 1970, 263–297.

    Google Scholar 

  14. G. Lallement, Semigroups and Combinatorial Applications, Wiley-Interscience, 1979.

    Google Scholar 

  15. A. Meyer and L. Stockmeyer, The equivalence problem for regular expressions with squaring requires exponential space, Proc. 13th IEEE Symp. Switching and Automata Theory (1972), 125–129.

    Google Scholar 

  16. M. Nivat, On some families of languages related to the Dyck languages, Proc. 2nd ACM Symp. Theory of Computing (1970), 221–225.

    Google Scholar 

  17. M. Nivat (avec M. Benois), Congruences parfaites et quasi-parfaites, Seminaire Dubreil, 25e Année (1971–72), 7–01–7–09.

    Google Scholar 

  18. M. O'Donnell, Computing in Systems Described by Equations, Lecture Notes in Computer Science 58 (1977), Springer-Verlag.

    Google Scholar 

  19. C. Ó'Dúnlaing, Finite and Infinite Regular Thue Systems, Ph.D. dissertation, University of California at Santa Barbara, 1981.

    Google Scholar 

  20. P. Raulefs, J. Siekmann, P. Szabo, and E. Unvericht, A short survey of the state of the art in matching and unification problems, SIGSAM Bulletin 13 (1979), 14–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. W. Loveland

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Book, R.V. (1982). The power of the Church-Rosser property for string rewriting systems. In: Loveland, D.W. (eds) 6th Conference on Automated Deduction. CADE 1982. Lecture Notes in Computer Science, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0000070

Download citation

  • DOI: https://doi.org/10.1007/BFb0000070

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11558-8

  • Online ISBN: 978-3-540-39240-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics