iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/BF02995563
On the monitoring of illicit vessel discharges using spaceborne sar remote sensing - a reconnaissance study in the Mediterranean sea | Annals of Telecommunications Skip to main content
Log in

On the monitoring of illicit vessel discharges using spaceborne sar remote sensing - a reconnaissance study in the Mediterranean sea

Surveillance des Dégazages Illicites par Télédétection rso Satellitaire une étude en Méditerranée

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

For much of the last century, the degradation of the sea due to ship pollutions has been recognized as a major concern. Early in the thirties, seven major maritime nations proceeded voluntarily to abating measures of oil discharges from tankers. But from then, it took four decades until the international community reaches a widely accepted agreement, namely the marpol 73/78 convention. Within a number of regional seas, declared as Special Areas, the regulations are even stricter, prohibiting ship discharges almost totally.

To ensure verification, as well as instigation for compliance, effective capabilities for monitoring and intervention are necessary. Key element for successful monitoring however is the regular remote surveillance. To a certain degree this is supported via routine airborne patrol operations, based either on visual inspection or on remote sensors, functioning in the microwave, infrared and ultraviolet spectral regions. Such operations are carried out only over limited geographic areas, since it is not feasible, technically and/or financially, to spread aerial surveillance over the entire breadth of the European waters. As a result, the compliance with the regulations is not applied everywhere with the same care.

Satellites equipped with sar (Synthetic Aperture Radar), due to their capability to detect oil spills on the sea surface, as well as to survey large areas of the sea independently of sunlight and cloud coverage, appear to be ideal for complementing the conventional airborne means. Nevertheless, despite such successful pioneer efforts, many would still argue that the potential of what could be achieved with the spaceborne sar surveillance, in monitoring illicit vessel discharges, has been somehow oversold.

This document concerns exclusively the problem of monitoring ship discharges with spaceborne sar. We distinguish them from major accidental pollution caused by ships in distress, because the unique singularities of the later pose different requirements for investigation. We present the main results of a regional reconnaissance study carried out over the entire Mediterranean Sea during the year 1999.

Résumé

Pendant la plus grande partie du siècle précédent, la dégradation des océans par les pollutions pétrolière du fait de navires a été une préoccupation majeure. Déjà dans les années 30, sept pays maritimes importants avaient volontairement procédé à des mesures diminuant les dégazages par les pétroliers. Mais il a fallu ensuite quatre décennies pour que la communauté internationale arrive à un accord largement accepté, la convention marpol 73/78. Pour une partie des mers régionales, déclarées « Zones Spéciales », les règles sont même plus strictes, interdisant presque totalement les dégazages.

Pour assurer une vérification de ces règles, ainsi qu’une incitation à s’y conformer, des capacités de surveillance et d’intervention sont nécessaires. Cependant, un élément clef d’une surveillance réussie réside dans un contrôle régulier à distance. D’une certaine façon cela est assuré par des opérations de patrouille aéroportée, basées soit sur une inspection visuelle soit sur des capteurs de télédétection opérant dans les régions spectrales microondes, infrarouge et ultraviolet. De telles opérations sont effectuées sur des zones géographiques limitées, du fait qu ’il n ’est pas possible, techniquement et/ou financièrement, d’étendre la surveillance aérienne sur l’ensemble des eaux européennes. Cela a pour résultat que la conformité aux règles n ’est pas appliquée partout avec le même soin.

Les satellites équipés de RSO (Radar à Synthèse d’Ouverture), du fait de leur capacité à détecter les nappes de pétrole la surface ainsi qu ’à étudier de grandes zones de mer indépendamment de la couverture nuageuse et de jour comme de nuit, apparaissent comme un instrument idéal pour compléter les moyens aéroportés classiques. Néanmoins, en dépit des succès rencontrés, nombre de personnes continuent à argumenter que le potentiel de ce qui pourrait être atteint avec une couverture SAR satellitaire, pour surveiller les dégazages illicites, a été quelque peu surestimé.

Ce document concerne exclusivement le problème de la surveillance des dégazages par SAR satellitaire. Nous les distinguons des pollutions accidentelles majeures causées par des navires en détresse, car la particularité unique de ces dernières entraîne des conditions différentes de recherche. Nous présentons les résultats principaux d’une étude de reconnaissance régionale effectuée sur l’ensemble de la mer Méditerranée pendant l’année 1999.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpers (W.), Huhnerfuss (H.), Radar signatures of oil films floating on the sea surface and the Marangoni effect,J. Geoph. Res.,93, pp. 3642–3648, 1988.

    Article  Google Scholar 

  2. Alpers (W.), Huhnerfuss (H.), (1989) the damping of ocean waves by surface films: A new look at an old problem,J. Geoph. Res.,94, pp. 6251–6265.

    Article  Google Scholar 

  3. Berrn (T.-I.),Wahl (T.),Anderssen (T.),Oslen (R.), Oil Spill Detection using Satellite Based SAR: Experience from a Field Experiment, Proceedings. First ers-1 Symposium - Space at the Service of our Environment, Cannes, France, 4–6 Nov. 1992, wsa sp-359 (March 1993), 1992.

  4. Calabresi, (G.),Del Frate (F.),Lichteneger (J.), Petrocchi (A.), pp. Trivero (P.), Neural networks for the oil spill detection using ers-sar data,Proceedings igars’99, Hamburg Germany, I, pp. 215–217, 1999.

  5. Cini (R.), Lombardini (P.P.), Damping effect of monolayers on surface wave motion in a liquid,J. Colloid Interface Sci.,65, pp. 387–389, 1978.

    Article  Google Scholar 

  6. Cini (R.), Lombardini (P.P.), Huhnerfuss (H.), Remote sensing of marine slicks utilizing their influence on wave spectra,Int. J. Remote Sensing,4, n° 1, pp. 101–110, 1983.

    Article  Google Scholar 

  7. Curtis (J.B.), Vessel-Source Oil Pollution and marpol 73/78: An International Success Story?, 15 Envti. L. 679,692,1985.

    Google Scholar 

  8. Donelan (M.A.), Pierson Jr (W.J.), Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry,dJ. Geophys. Res.,92, 4971–5029, 1987.

    Article  Google Scholar 

  9. Espedal (H.A.), Wahl (T.), satellite sar oil spill detection using wind speed history information,Int. J. Remote Sensing,20, n° 1, 49–65, 1999.

    Article  Google Scholar 

  10. Fay (J.A.), Physical processes in the spread of oil on the water surface, pp. 467. In Proceedings of 1971 Joint conference on Prevention and control of oil spills, American petroleum Institute, Washington, DC, 1971.

  11. Gade (M.), Alpers (W.), Using ers-2 sar images for routine observation of marine pollution in European coastal waters,Sci. Total Environ., 237-238, 441–448, 1999.

    Article  Google Scholar 

  12. Gade (M.), Alpers (W.), H. Huhnerfuss (H.), Wismann (V.R.), Lange (P.A.), On the Reduction of the radar Backscatter by oceanic Surface Films: Scatterometer Measurements and Their theoretical Interpretation,Remote Sens. Environ. 66 52–70, 1998.

    Article  Google Scholar 

  13. Hasselman (K.), Grundegleichungen der Seegangsvoraussage, Schiffstechnik, 7, pp. 191–195, 1960.

    Google Scholar 

  14. Hasselman (K.), Basic developments in fluid dynamics,Ed. M. Holt, pp. 117–182, 1968.

  15. Hollinger (J.P.) Mennella (R.A.), Measurements of the distribution and volume of sea-surface oil spills using multifrequency microwave radiometery, In « Remote Sensing for the Control of marine pollution Edited by Jean-Marie Massinnato Challenges of modern Society 6 1984Plenum Press, 1984.

  16. Huhnerfuss (H.) Alpers (W.), Witte (F.), Layers of different thickness on mineral oil spills detected by grey level textures of real aperture radar images,Int. J. Remote Sens. 10, n° 6, pp. 1093–1099, 1989.

    Article  Google Scholar 

  17. Johannessen (J.A.),Attema (E.),Desnos (Y.L.), Wind field retrievals from sar,Earth Observation Quarterly, n° 59, June 1998.

  18. Jordan (R.E.),Payne (J.R.), Fate and weathering of petroleum spills in the marine environment, EditionAnn Arbore Science -The Butterworth Group, pp. 4, 1980.

  19. Keller (W.C.), Plant (W.J.), The dependence of X band microwave sea return on atmospheric stability and sea state,J. Geoph. Res.,90, 1019–1029, 1985.

    Article  Google Scholar 

  20. Langmuir (I.), Surface motion induced by the wind,Science,87, 119–123, 1938.

    Article  Google Scholar 

  21. Levett (R.),Sullivan (K.), Development of algorithms for automatic detection of oil slicks in sar images,Res. Repp. No eos-92/080-RP-002, Earth Observation Systems- eos Ltd UK, 1993.

  22. McAuliffe (CD.), Dispersal and alteration of oil discharges on a water surface,Proceedings of Symposium: Fate and effects of petroleum hydrocarbons in the marine ecosystems and organisms, November 10–12, 1976, Washington, 1977.

  23. Melsheimer (c),Alpers (w.),Gade (M.), Investigation of multifrequency / multipolarization radar signatures of rain cells derived from sir-c/x-sar data,Proceed, igarss’96, Lincoln, ne, 1996.

  24. Parker (H.D.), Cormack (D.), Evaluation of Infrared Line Scan (irls) and Side Looking Airborne Radar (slar) over controlled oil spills in the North Sea, in Remote Sensing for Control of Marine Pollution, Edited by Jean-Marie Massin,NATO-Chal- lenges of Modem Society,6, pp. 237–256, 1984.

    Google Scholar 

  25. Pavlakis (P.), Investigation of the potential of ers-1/2 sar images for monitoring oil spills on the sea surface,Rep. eur 16351 en, 1995.

  26. Pavlakis (P.),Sieber (A.J.),Alexandry (S.), Monitoring oil-spill pollution in the Mediterranean with ers sar,Earth Observation Quarterly, n° 52, 1996.

  27. Pedersen (J.), Sejely (L.), Strm (G.D.), Follum (O.A.), Andersen (J.H.), Wahl (T.), Skoelt (A.), Oil spill detection by use of ers sar data; from r&d towards pre-operational early warning detection service,Proceedings of the Second ers Applications Workshop, London, ESA sp-383, esa Publications Division. The Netherlands, 1996.

    Google Scholar 

  28. Pellemans (A.H.J.M.),Bos (W.G.),Konings (H.),van Swol (R.W.), Oil Spill Detection on the North Sea using ers-1 sar data,Rep. Netherlands Remote Sensing Board (bcrs), Program Bureau, Rijkswaterstaat Survey Department, 1995.

  29. rempec, Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea, Regional Information System, March 1998, 1998.

  30. Siingh (K.P.), Gray (A.L.), Hawkins (R.K.), O’Neil (R.A.), The influence of surface oil on C-band and K-band ocean backscatter,IEEE Trans. Geosci. Remote Sens.,GE-24, pp. 738–744, 1986.

    Article  Google Scholar 

  31. Thorp (S.A.), Small-scale processes in the upperocean boundary layer,Nature,318, 12 Nov. 1985, 519–522, 1985.

    Article  Google Scholar 

  32. Valenzuela (G.R.), Theories for the interaction of electromagnetic and oceanic waves - a review,Boundary Layer Meteorol.,13, 61–85, 1978.

    Article  Google Scholar 

  33. Vizzari (S.),Fusco (L.), A Distributed Oil Spill Monitoring Infrastructure.Air & Space Europe, n° 4/99 1, Elsevier, 1999.

  34. Wahl (T.),Skely (A.),Pedersen (J.), Practical use of ers-1 sar images in oil pollution monitoring.Proceedings of the International Geoscience and Remote Sensing Symposioum (igakss 94),4. (IEEE), Pisacataway, USA, pp. 1954–1956, 1994.

  35. Wismann (V), Gade (M.), Alpers (W.), Huhnerfuss (H.), Radar signatures of marine mineral oil spills measured by an airborne multi-frequency radar,Int. J. Remote. Sens,19, n° 18, 3607–3623, 1998.

    Article  Google Scholar 

  36. Wismann (V), Theis (R.), Alpers (W), Huhnerfuss (H.), The damping of short gravity-capillary waves by experimental sea slicks measured by a multifrequency microwave scatterometer,Proceedings of oceans 93, Victoria, BC, Canada,II (New York, IEEE), pp. 342–347, 1993.

    Google Scholar 

  37. Wright (J.W.), A new model for sea clutter, ieee Trans. Antennas Propagation,AP-16, 217–223, 1968.

    Article  Google Scholar 

  38. Wu (J.), Effects of atmospheric stability on ocean ripples: a comparison between optical and microwave measurements,J. Geoph. Res.,96, 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlakis, P., Tarchi, D. & Sieber, A.J. On the monitoring of illicit vessel discharges using spaceborne sar remote sensing - a reconnaissance study in the Mediterranean sea. Ann. Télécommun. 56, 700–718 (2001). https://doi.org/10.1007/BF02995563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995563

Key words

Mots clés

Navigation