Bibliography
W. Ackermann [1950] Konstruktiver Aufbau eines Abschnitts der zweiten Cantorschen Zahlenklasse. Math. Zeit.53 (1950) 403–413.
P. H. G. Aczel [1966] Mathematical problems in logic. D. Phil. thesis, Oxford.
[1967] Normal functors on linear orderings. (Abstract) J. Symbolic Logic32 (1967) 430.
[1969] A new approach to the Bachmann method for describing countable ordinals. (Preliminary summary) (Unpublished).
[1972] Describing ordinals using functionals of transfinite type. J. Symbolic Logic37 (1972) 35–47.
H. Bachmann [1950] Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen. Vierteljahresschr. Naturforsch. Ges. Zürich95 (1950) 115–147.
[1952] Vergleich und Kombination zweier Methoden von Veblen und Finsler zur Lösung des Problems der ausgezeichneten Folgen von Ordnungszahlen. Comment. Math. Helv.26 (1952) 55–67.
[1954] Normalfunktionen und Hauptfolgen. Comment. Math. Helv.28 (1954) 9–16.
[1955]Transfinite Zahlen. Springer, Berlin.
J. E. Bridge [1972] Some problems in mathematical logic. Systems of ordinal functions and ordinal notations. D. Phil. thesis, Oxford.
[1975] A simplification of the Bachmann method for generating large countable ordinals. J. Symbolic Logic40 (1975) 171–185.
[1978] A summary of the literature concerning ordinal notations. (Unpublished)
L. E. J. Brouwer [1918–19] Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Reprinted inCollected works (Ed: A. Heyting, Vol. I [150]–[221].
W. Buchholz [1974] Rekursive Bezeichnungssysteme für Ordinalzahlen auf der Grundlage der Feferman-Aczelschen NormalfunktionenΘ α. Dissertation, Munich.
[1975] Normalfunktionen und konstruktive Systeme von Ordinalzahlen.Proof theory symposium, Kiel 1974, pp. 4–25, Lecture Notes in Mathematics, 500, Springer, Berlin.
[1976] Über Teilsysteme von\(\bar \theta (\{ g\} )\). Arch. Math. Logik Grundlag.18 (1976) 85–98.
[1982] Collapsing functions. (Preprint)
[1986] A new system of proof theoretic ordinal functions. Ann. Pure Appl. Logic32 (1986) 195–207.
[198?] An independence result for (Π 11 -CA) + BI. To appear in Ann. Pure Appl. Logic.
W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg [1981]Iterated inductive definitions and subsystems of analysis: Recent prooftheoretical studies. Lecture Notes in Mathematics, 897, Springer, Berlin.
W. Buchholz and W. Pohlers [1978] Provable well-orderings of formal theories for transfinitely iterated inductive definitions. J. Symbolic Logic43 (1978) 118–125.
W. Buchholz and K. Schütte [1976] Die Beziehungen zwischen den OrdinalzahlsystemenΣ und\(\bar \theta (\omega )\). Arch. Math. Logik Grundlag.17 (1976) 179–189.
[1983] Ein Ordinalzahlensystem für die beweistheoretische Abgrenzung der Π 11 -Separation und Bar-Induktion. Bayer. Akad. Wiss. Math.-Nature. Kl.1983, 99–132.
A. Church [1927] Alternatives to Zermelo's assumption. Trans. Amer. Math. Soc.29 (1927) 178–208.
A. Church and S. C. Kleene [1937] Formal definitions in the theory of ordinal numbers. Fund. Math.28 (1937) 11–21.
E. A. Cichon and S. S. Wainer [1983] The slow-growing and Grzegorczyk hierarchies. J. Symbolic Logic48 (1983) 399–408.
J. N. Crossley [1965] Constructive order types I.Formal systems and recursive functions (Eds: J.N. Crossley and M.A.E. Dummett), pp. 189–264, North-Holland, Amsterdam.
[1969]Constructive order types. North-Holland, Amsterdam.
[1980]The emergence of number. Upside Down A Book Co., Steel's Creek, Victoria, Australia 3775.
J. N. Crossley, A. B. M. Manaster, and M. Moses [1986] Recursive categoricity and recursive stability. Ann. Pure Appl. Logic31 (1986) 191–204.
J. N. Crossley and R. J. Parikh [1963] On isomorphisms of recursive well-orderings. (Abstract) J. Symbolic Logic28 (1963) 308.
J. N. Crossley and K. Schütte [1966] Non-uniqueness at ω2 in Kleene's ϕ. Arch. Math. Logik Grundlag.9 (1966) 95–101.
R. Dedekind [1888] Was sind und was sollen die Zahlen? English translation in: R. Dedekind,Essays on the theory of numbers (translated by W. Berman), Dover, New York, 1963.
A. Denjoy [1946–54]L'énumération transfinie. 4 volumes. Gauthier-Villars, Paris.
E. C. Dennis-Jones and S. S. Wainer [1984] Subrecursive hierarchies via direct limits.Computation and proof theory, pp. 117–128. Lecture Notes in Mathematics, 1104, Springer, Berlin.
H. C. Doets [1970] A generalization in the theory of normal functions. Z. Math. Logik Grundlag. Math.16 (1970) 389–392.
S. Feferman [1964] Systems of predicative analysis. J. Symbolic Logic29 (1964) 1–30.
[1968] Systems of predicative analysis II: Representations of ordinals. J. Symbolic Logic33 (1968) 193–220.
[1970] Hereditarily replete functionals over the ordinals. In Kino et al. [1970], pp. 289–301.
[1972] Infinitary properties, local functors, and systems of ordinals functions.Conference in mathematical logic — London '70, pp. 63–97, Lecture Notes in Mathematics, 255, Springer, Berlin.
[1981] Preface: How we got from there to here. In Buchholz et al. [1981], pp. 1–15.
[198?] Proof theory: A personal report. (Preprint)
P. Finsler [1951] Eine transfinite Folge arithmetischer Operationen. Comment. Math. Helv.25 (1951) 75–90.
H. Gaifman [1967] A generalization of Mahlo's method for obtaining large cardinal numbers. Israel J. Math.5 (1967) 188–199.
[1967a] Uniform extension operators for models and their applications.Sets, models and recursion theory (Ed: J.N. Crossley), pp. 122–155, North-Holland, Amsterdam.
H. Gerber [1967] An extension of Schütte's Klammersymbols. Math. Ann.174 (1967) 203–216.
[1970] Brouwer's bar theorem and a system of ordinal notations. In Kino et al. [1970], pp. 327–338.
J.-Y. Girard [1977] Functionals and ordinoids.Colloque International de Logique (Clermont-Ferrand, 1975), pp. 59–71, CNRS, Paris.
[1981]Π1/2-logic. Part I: Dilators. Ann. Math. Logic21 (1981) 75–219.
[1982] A survey ofΠ1/2-logic.Logic, methodology and philosophy of science VI (Hannover, 1979), pp. 89–107, North-Holland, Amsterdam.
[1985] Introduction toΠ1/2-logic. Synthese62 (1985) 191–216.
J.-Y. Girard and J. P. Ressayre [1985] Eléments de logiqueΠ1/n.Symposia in Pure Math. 42, pp. 389–445, Amer. Math. Soc., Providence, RI.
J.-Y. Girard and J. Vauzeilles [1984] Functors and ordinal notations I: A functorial construction of the Veblen hierarchy. J. Symbolic Logic49 (1984) 713–729.
[1984a] Functors and ordinal notations II: A functorial construction of the Bachmann hierarchy. J. Symbolic Logic49 (1984) 1079–1114.
[1984b] Les premiers recursivement inaccessible et Mahlo et la théorie des dilatateurs. Arch. Math. Logik Grundlag.24 (1984) 167–191.
A. Grzegorczyk [1953] Some classes of recursive functions. Rozprawy Mat. No. 4.
G. H. Hardy [1904] A theorem concerning the infinite cardinal numbers. Quarterly J. Math.35 (1904) 87–94.
W. A. Howard [1972] A system of abstract constructive ordinals. J. Symbolic Logic37 (1972) 355–374.
D. Isles [1970] Regular ordinals and normal forms. In Kino et al. [1970], pp. 339–361.
[1971] Natural well-orderings. J. Symbolic Logic36 (1971) 288–300.
G. Jäger [1983] A well-ordering proof for Feferman's theoryT 0. Arch. Math. Logik Grundlag.23 (1983) 65–77.
[1984] ϱ-inaccessible ordinals, collapsing functions and a recursive notation system. Arch. Math. Logik Grundlag.24 (1984) 49–62.
[1985] Countable admissible ordinals and dilators. (Preprint)
G. Jäger and W. Pohlers [1983] Eine beweistheoretische Untersuchung von (Δ1/2-CA) + (BI) und verwandter Systeme. Bayer. Akad. Wiss. Math.-Natur. Kl.1982, 1–28.
A. Kino, J. Myhill, and R. E. Vesley (Eds.) [1970]Intuitionism and Proof theory. Proceedings of the summer conference. Buffalo, New York, 1968. North-Holland, Amsterdam.
J. E. Kister (see J. E. Bridge)
S. C. Kleene [1938] On notation for ordinal numbers. J. Symbolic Logic3 (1938) 150–155.
[1955] On the forms of predicates in the theory of constructive ordinals (second paper). Amer. J. Math.77 (1955) 405–428.
G. Kreisel [1965] Mathematical logic. InLectures in modern mathematics, Vol. III (Ed: T.L. Saaty), pp. 95–195, Wiley, New York.
H. Levitz [1965] On the ordinal notations of Schütte and the ordinal diagrams of Takeuti. Ph.D. thesis, Penn. State University.
[1966] Über die Finslerschen höheren arithmetischen Operationen. Comment. Math. Helv.41 (1966) 273–286.
[1969] A simplification of Takeuti's ordinal diagrams of finite order. Z. Math. Logik Grundlag. Math.15 (1969) 141–154.
[1969a] On the Finsler and Doner-Tarski arithmetical hierarchies. Comment. Math. Helv.44 (1969) 89–92.
[1970] On the relationship between Takeuti's ordinal diagramsO(n) and Schütte's system of notationsΣ(n). In Kino et al. [1970], pp. 377–405.
[1973] A characterization of the Veblen-Schütte functions by means of functionals. Comment. Math. Helv.48 (1973) 382–393.
H. Levitz and K. Schütte [1971] A characterization of Takeuti's ordinal diagrams of finite order. Arch. Math. Logik Grundlag.14 (1971) 75–97.
L. W. Miller [1976] Normal functions and constructive ordinal notations. J. Symbolic Logic41 (1976) 439–459.
Y. N. Moschovakis [1966] Many-one degrees of the predicatesH α (x). Pacific J. Math.18 (1966) 329–342.
W. Neumer [1953–56] Zur Konstruktion von Ordnungszahlen. Math. Zeit.58 (1953) 391–413; ibid.59 (1953) 434–454; ibid.60 (1954) 1–16; ibid.61 (1954) 47–69; ibid.64 (1956) 435–456.
[1957–70] Algorithmen für Ordnungszahlen und Normalfunktionen. Z. Math. Logik Grundlag. Math.3 (1957) 108–150; ibid.6 (1960) 1–65; ibid.16 (1970) 1–112.
P. Päppinghaus [1985] Ptykes in Gödel's T und Verallgemeinerte Rekursion über Mengen und Ordinalzahlen. Habilitationsschrift, Hannover.
[1985a] A typed λ-calculus and Girard's model of ptykes.Foundations of logic and linguistics: problems and their solutions (Eds: P. Weingartner and G. Dorn), pp. 245–279, Plenum.
J. Pearce [1984] A constructive consistency proof of a fragment of set theory. Ann. Pure Appl. Logic27 (1984) 25–62.
H. Pfeiffer [1964] Ausgezeichnete Folgen für gewisse Abschnitte der zweiten und weiterer Zahlklassen. Dissertation, Hannover.
[1969] Ein Bezeichnungssystem für Ordinalzahlen. Arch. Math. Logik Grundlag.12 (1969) 12–17.
[1970] Ein Bezeichnungssystem für Ordinalzahlen. Arch. Math. Logik Grundlag.13 (1970) 74–90.
[1972] Vergleich zweier Bezeichnungssysteme für Ordinalzahlen. Arch. Math. Logik Grundlag.15 (1972) 41–56.
[1974] Über zwei Bezeichnungssysteme für Ordinalzahlen. Arch. Math. Logik Grundlag.16 (1974) 23–36.
W. Pohlers [198?] Ordinal notations based on a hierarchy of inaccessible cardinals. To appear in Ann. Pure Appl. Logic.
D. Schmidt [1972] Topics in mathematical logic. Characterisations of small constructive ordinals; constructive finite number classes. D. Phil. thesis, Oxford.
[1975] Bounds for the closure ordinals of replete monotonic increasing functions. J. Symbolic Logic40 (1975) 305–316.
[1976] Built-up systems of fundamental sequences and hierarchies of number theoretic functions. Arch. Math. Logik Grundlag.18 (1976) 47–53; ibid.18 (1976) 145–146.
K. Schütte [1954] Kennzeichnung von Ordnungszahlen durch rekursiv erklärte Funktionen. Math. Ann.127 (1954) 15–32.
[1960]Beweistheorie. Springer, Berlin. (Completely revised English edition 1977)
[1963] Lecture Notes in Mathematical Logic. Vol. 2. Penn. State University.
[1965] Predicative well-orderings.Formal systems and recursive functions (Eds: J.N. Crossley and M.A.E. Dummett), pp. 280–303, North-Holland, Amsterdam.
[1968–69] Ein konstruktives System von Ordnungszahlen. Arch. Math. Logik Grundlag.11 (1968) 126–137; ibid.12 (1969) 3–11.
[1976] Einführung der NormalfunktionenΘ α ohne Auswahlaxiom und ohne Regularitätsbedingung. Arch. Math. Logik Grundlag.17 (1976) 171–178.
J. Stern (Ed.) [1982]Proceedings of the Herbrand Symposium, Logic Colloquium '81. North-Holland, Amsterdam.
M. E. Szabo [1969]The collected papers of Gerhard Gentzen. North-Holland, Amsterdam.
G. Takeuti [1957] Ordinal diagrams. J. Math. Soc. Japan9 (1957) 386–394.
[1975]Proof theory. North-Holland, Amsterdam.
J. van de Wiele [1982] Recursive dilators and generalized recursions. In J. Stern [1982], pp. 325–332.
J. Vauzeilles [1982] Functors and ordinal notations III: Dilators and gardens. In J. Stern [1982], pp. 333–364.
[1985] Functors and ordinal notations IV: The Howard ordinal and the functorΛ. J. Symbolic Logic50 (1985) 331–338.
O. Veblen [1908] Continuous increasing functions of finite and transfinite ordinals. Trans. Amer. Math. Soc.9 (1908) 280–292.
S. S. Wainer [1985] The “slow-growing”Π1/2 approach to hierarchies.Proc. Symposia in Pure Math. 42, pp. 487–502, Amer. Math. Soc., Providence, RI.
[1985a] Subrecursive ordinals.Recursion Theory Week, pp. 405–418, Lecture Notes in Mathematics, 1141, Springer, Berlin.
R. W. Weyrauch [1972] Relations between some-hierarchies of ordinal functions and functionals. Ph. D. thesis, Stanford Univ., California.
Author information
Authors and Affiliations
Additional information
Dedicated to Prof. Dr. K. Schütte on his 75th birthday
The original version of this paper was presented as an invited address by Crossley at the Jubileum in honour of Professor Schütte's 75th birthday in Munich in June 1984. It was subsequently corrected and substantially revised in late 1985 by both authors in Oxford where Crossley held a Visiting Fellowship at All Souls College.
We are indebted to P.H.G. Aczel, W. Buchholz, S. Feferman, G. Jäger, H. Levitz, W. Pohlers, and S.S. Wainer for materials and comments which significantly helped in the preparation of this paper.
Rights and permissions
About this article
Cite this article
Crossley, J.N., Kister, J.B. Natural well-orderings. Arch math Logik 26, 57–76 (1987). https://doi.org/10.1007/BF02017491
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02017491