iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/BF02017491
Natural well-orderings | Archive for Mathematical Logic Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  • W. Ackermann [1950] Konstruktiver Aufbau eines Abschnitts der zweiten Cantorschen Zahlenklasse. Math. Zeit.53 (1950) 403–413.

    Article  Google Scholar 

  • P. H. G. Aczel [1966] Mathematical problems in logic. D. Phil. thesis, Oxford.

  • [1967] Normal functors on linear orderings. (Abstract) J. Symbolic Logic32 (1967) 430.

    Google Scholar 

  • [1969] A new approach to the Bachmann method for describing countable ordinals. (Preliminary summary) (Unpublished).

  • [1972] Describing ordinals using functionals of transfinite type. J. Symbolic Logic37 (1972) 35–47.

    Google Scholar 

  • H. Bachmann [1950] Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen. Vierteljahresschr. Naturforsch. Ges. Zürich95 (1950) 115–147.

    Google Scholar 

  • [1952] Vergleich und Kombination zweier Methoden von Veblen und Finsler zur Lösung des Problems der ausgezeichneten Folgen von Ordnungszahlen. Comment. Math. Helv.26 (1952) 55–67.

    Google Scholar 

  • [1954] Normalfunktionen und Hauptfolgen. Comment. Math. Helv.28 (1954) 9–16.

    Google Scholar 

  • [1955]Transfinite Zahlen. Springer, Berlin.

    Google Scholar 

  • J. E. Bridge [1972] Some problems in mathematical logic. Systems of ordinal functions and ordinal notations. D. Phil. thesis, Oxford.

  • [1975] A simplification of the Bachmann method for generating large countable ordinals. J. Symbolic Logic40 (1975) 171–185.

    Google Scholar 

  • [1978] A summary of the literature concerning ordinal notations. (Unpublished)

  • L. E. J. Brouwer [1918–19] Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Reprinted inCollected works (Ed: A. Heyting, Vol. I [150]–[221].

  • W. Buchholz [1974] Rekursive Bezeichnungssysteme für Ordinalzahlen auf der Grundlage der Feferman-Aczelschen NormalfunktionenΘ α. Dissertation, Munich.

  • [1975] Normalfunktionen und konstruktive Systeme von Ordinalzahlen.Proof theory symposium, Kiel 1974, pp. 4–25, Lecture Notes in Mathematics, 500, Springer, Berlin.

    Google Scholar 

  • [1976] Über Teilsysteme von\(\bar \theta (\{ g\} )\). Arch. Math. Logik Grundlag.18 (1976) 85–98.

    Article  Google Scholar 

  • [1982] Collapsing functions. (Preprint)

  • [1986] A new system of proof theoretic ordinal functions. Ann. Pure Appl. Logic32 (1986) 195–207.

    Article  Google Scholar 

  • [198?] An independence result for (Π 11 -CA) + BI. To appear in Ann. Pure Appl. Logic.

  • W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg [1981]Iterated inductive definitions and subsystems of analysis: Recent prooftheoretical studies. Lecture Notes in Mathematics, 897, Springer, Berlin.

    Google Scholar 

  • W. Buchholz and W. Pohlers [1978] Provable well-orderings of formal theories for transfinitely iterated inductive definitions. J. Symbolic Logic43 (1978) 118–125.

    Google Scholar 

  • W. Buchholz and K. Schütte [1976] Die Beziehungen zwischen den OrdinalzahlsystemenΣ und\(\bar \theta (\omega )\). Arch. Math. Logik Grundlag.17 (1976) 179–189.

    Google Scholar 

  • [1983] Ein Ordinalzahlensystem für die beweistheoretische Abgrenzung der Π 11 -Separation und Bar-Induktion. Bayer. Akad. Wiss. Math.-Nature. Kl.1983, 99–132.

    Google Scholar 

  • A. Church [1927] Alternatives to Zermelo's assumption. Trans. Amer. Math. Soc.29 (1927) 178–208.

    MathSciNet  Google Scholar 

  • A. Church and S. C. Kleene [1937] Formal definitions in the theory of ordinal numbers. Fund. Math.28 (1937) 11–21.

    Google Scholar 

  • E. A. Cichon and S. S. Wainer [1983] The slow-growing and Grzegorczyk hierarchies. J. Symbolic Logic48 (1983) 399–408.

    Google Scholar 

  • J. N. Crossley [1965] Constructive order types I.Formal systems and recursive functions (Eds: J.N. Crossley and M.A.E. Dummett), pp. 189–264, North-Holland, Amsterdam.

    Google Scholar 

  • [1969]Constructive order types. North-Holland, Amsterdam.

    Google Scholar 

  • [1980]The emergence of number. Upside Down A Book Co., Steel's Creek, Victoria, Australia 3775.

  • J. N. Crossley, A. B. M. Manaster, and M. Moses [1986] Recursive categoricity and recursive stability. Ann. Pure Appl. Logic31 (1986) 191–204.

    Article  Google Scholar 

  • J. N. Crossley and R. J. Parikh [1963] On isomorphisms of recursive well-orderings. (Abstract) J. Symbolic Logic28 (1963) 308.

    Google Scholar 

  • J. N. Crossley and K. Schütte [1966] Non-uniqueness at ω2 in Kleene's ϕ. Arch. Math. Logik Grundlag.9 (1966) 95–101.

    Article  Google Scholar 

  • R. Dedekind [1888] Was sind und was sollen die Zahlen? English translation in: R. Dedekind,Essays on the theory of numbers (translated by W. Berman), Dover, New York, 1963.

    Google Scholar 

  • A. Denjoy [1946–54]L'énumération transfinie. 4 volumes. Gauthier-Villars, Paris.

    Google Scholar 

  • E. C. Dennis-Jones and S. S. Wainer [1984] Subrecursive hierarchies via direct limits.Computation and proof theory, pp. 117–128. Lecture Notes in Mathematics, 1104, Springer, Berlin.

    Google Scholar 

  • H. C. Doets [1970] A generalization in the theory of normal functions. Z. Math. Logik Grundlag. Math.16 (1970) 389–392.

    Google Scholar 

  • S. Feferman [1964] Systems of predicative analysis. J. Symbolic Logic29 (1964) 1–30.

    Google Scholar 

  • [1968] Systems of predicative analysis II: Representations of ordinals. J. Symbolic Logic33 (1968) 193–220.

    Google Scholar 

  • [1970] Hereditarily replete functionals over the ordinals. In Kino et al. [1970], pp. 289–301.

  • [1972] Infinitary properties, local functors, and systems of ordinals functions.Conference in mathematical logic — London '70, pp. 63–97, Lecture Notes in Mathematics, 255, Springer, Berlin.

    Google Scholar 

  • [1981] Preface: How we got from there to here. In Buchholz et al. [1981], pp. 1–15.

  • [198?] Proof theory: A personal report. (Preprint)

  • P. Finsler [1951] Eine transfinite Folge arithmetischer Operationen. Comment. Math. Helv.25 (1951) 75–90.

    Google Scholar 

  • H. Gaifman [1967] A generalization of Mahlo's method for obtaining large cardinal numbers. Israel J. Math.5 (1967) 188–199.

    Google Scholar 

  • [1967a] Uniform extension operators for models and their applications.Sets, models and recursion theory (Ed: J.N. Crossley), pp. 122–155, North-Holland, Amsterdam.

    Google Scholar 

  • H. Gerber [1967] An extension of Schütte's Klammersymbols. Math. Ann.174 (1967) 203–216.

    Article  Google Scholar 

  • [1970] Brouwer's bar theorem and a system of ordinal notations. In Kino et al. [1970], pp. 327–338.

  • J.-Y. Girard [1977] Functionals and ordinoids.Colloque International de Logique (Clermont-Ferrand, 1975), pp. 59–71, CNRS, Paris.

    Google Scholar 

  • [1981]Π1/2-logic. Part I: Dilators. Ann. Math. Logic21 (1981) 75–219.

    Article  Google Scholar 

  • [1982] A survey ofΠ1/2-logic.Logic, methodology and philosophy of science VI (Hannover, 1979), pp. 89–107, North-Holland, Amsterdam.

    Google Scholar 

  • [1985] Introduction toΠ1/2-logic. Synthese62 (1985) 191–216.

    Article  Google Scholar 

  • J.-Y. Girard and J. P. Ressayre [1985] Eléments de logiqueΠ1/n.Symposia in Pure Math. 42, pp. 389–445, Amer. Math. Soc., Providence, RI.

    Google Scholar 

  • J.-Y. Girard and J. Vauzeilles [1984] Functors and ordinal notations I: A functorial construction of the Veblen hierarchy. J. Symbolic Logic49 (1984) 713–729.

    Google Scholar 

  • [1984a] Functors and ordinal notations II: A functorial construction of the Bachmann hierarchy. J. Symbolic Logic49 (1984) 1079–1114.

    Google Scholar 

  • [1984b] Les premiers recursivement inaccessible et Mahlo et la théorie des dilatateurs. Arch. Math. Logik Grundlag.24 (1984) 167–191.

    Article  Google Scholar 

  • A. Grzegorczyk [1953] Some classes of recursive functions. Rozprawy Mat. No. 4.

  • G. H. Hardy [1904] A theorem concerning the infinite cardinal numbers. Quarterly J. Math.35 (1904) 87–94.

    Google Scholar 

  • W. A. Howard [1972] A system of abstract constructive ordinals. J. Symbolic Logic37 (1972) 355–374.

    Google Scholar 

  • D. Isles [1970] Regular ordinals and normal forms. In Kino et al. [1970], pp. 339–361.

  • [1971] Natural well-orderings. J. Symbolic Logic36 (1971) 288–300.

    Google Scholar 

  • G. Jäger [1983] A well-ordering proof for Feferman's theoryT 0. Arch. Math. Logik Grundlag.23 (1983) 65–77.

    Google Scholar 

  • [1984] ϱ-inaccessible ordinals, collapsing functions and a recursive notation system. Arch. Math. Logik Grundlag.24 (1984) 49–62.

    Article  Google Scholar 

  • [1985] Countable admissible ordinals and dilators. (Preprint)

  • G. Jäger and W. Pohlers [1983] Eine beweistheoretische Untersuchung von (Δ1/2-CA) + (BI) und verwandter Systeme. Bayer. Akad. Wiss. Math.-Natur. Kl.1982, 1–28.

  • A. Kino, J. Myhill, and R. E. Vesley (Eds.) [1970]Intuitionism and Proof theory. Proceedings of the summer conference. Buffalo, New York, 1968. North-Holland, Amsterdam.

    Google Scholar 

  • J. E. Kister (see J. E. Bridge)

  • S. C. Kleene [1938] On notation for ordinal numbers. J. Symbolic Logic3 (1938) 150–155.

    Google Scholar 

  • [1955] On the forms of predicates in the theory of constructive ordinals (second paper). Amer. J. Math.77 (1955) 405–428.

    Google Scholar 

  • G. Kreisel [1965] Mathematical logic. InLectures in modern mathematics, Vol. III (Ed: T.L. Saaty), pp. 95–195, Wiley, New York.

    Google Scholar 

  • H. Levitz [1965] On the ordinal notations of Schütte and the ordinal diagrams of Takeuti. Ph.D. thesis, Penn. State University.

  • [1966] Über die Finslerschen höheren arithmetischen Operationen. Comment. Math. Helv.41 (1966) 273–286.

    Google Scholar 

  • [1969] A simplification of Takeuti's ordinal diagrams of finite order. Z. Math. Logik Grundlag. Math.15 (1969) 141–154.

    Google Scholar 

  • [1969a] On the Finsler and Doner-Tarski arithmetical hierarchies. Comment. Math. Helv.44 (1969) 89–92.

    Google Scholar 

  • [1970] On the relationship between Takeuti's ordinal diagramsO(n) and Schütte's system of notationsΣ(n). In Kino et al. [1970], pp. 377–405.

  • [1973] A characterization of the Veblen-Schütte functions by means of functionals. Comment. Math. Helv.48 (1973) 382–393.

    Google Scholar 

  • H. Levitz and K. Schütte [1971] A characterization of Takeuti's ordinal diagrams of finite order. Arch. Math. Logik Grundlag.14 (1971) 75–97.

    Article  Google Scholar 

  • L. W. Miller [1976] Normal functions and constructive ordinal notations. J. Symbolic Logic41 (1976) 439–459.

    Google Scholar 

  • Y. N. Moschovakis [1966] Many-one degrees of the predicatesH α (x). Pacific J. Math.18 (1966) 329–342.

    Google Scholar 

  • W. Neumer [1953–56] Zur Konstruktion von Ordnungszahlen. Math. Zeit.58 (1953) 391–413; ibid.59 (1953) 434–454; ibid.60 (1954) 1–16; ibid.61 (1954) 47–69; ibid.64 (1956) 435–456.

    Article  Google Scholar 

  • [1957–70] Algorithmen für Ordnungszahlen und Normalfunktionen. Z. Math. Logik Grundlag. Math.3 (1957) 108–150; ibid.6 (1960) 1–65; ibid.16 (1970) 1–112.

    Google Scholar 

  • P. Päppinghaus [1985] Ptykes in Gödel's T und Verallgemeinerte Rekursion über Mengen und Ordinalzahlen. Habilitationsschrift, Hannover.

    Google Scholar 

  • [1985a] A typed λ-calculus and Girard's model of ptykes.Foundations of logic and linguistics: problems and their solutions (Eds: P. Weingartner and G. Dorn), pp. 245–279, Plenum.

  • J. Pearce [1984] A constructive consistency proof of a fragment of set theory. Ann. Pure Appl. Logic27 (1984) 25–62.

    Article  Google Scholar 

  • H. Pfeiffer [1964] Ausgezeichnete Folgen für gewisse Abschnitte der zweiten und weiterer Zahlklassen. Dissertation, Hannover.

    Google Scholar 

  • [1969] Ein Bezeichnungssystem für Ordinalzahlen. Arch. Math. Logik Grundlag.12 (1969) 12–17.

    Article  Google Scholar 

  • [1970] Ein Bezeichnungssystem für Ordinalzahlen. Arch. Math. Logik Grundlag.13 (1970) 74–90.

    Article  Google Scholar 

  • [1972] Vergleich zweier Bezeichnungssysteme für Ordinalzahlen. Arch. Math. Logik Grundlag.15 (1972) 41–56.

    Google Scholar 

  • [1974] Über zwei Bezeichnungssysteme für Ordinalzahlen. Arch. Math. Logik Grundlag.16 (1974) 23–36.

    Article  Google Scholar 

  • W. Pohlers [198?] Ordinal notations based on a hierarchy of inaccessible cardinals. To appear in Ann. Pure Appl. Logic.

  • D. Schmidt [1972] Topics in mathematical logic. Characterisations of small constructive ordinals; constructive finite number classes. D. Phil. thesis, Oxford.

  • [1975] Bounds for the closure ordinals of replete monotonic increasing functions. J. Symbolic Logic40 (1975) 305–316.

    Google Scholar 

  • [1976] Built-up systems of fundamental sequences and hierarchies of number theoretic functions. Arch. Math. Logik Grundlag.18 (1976) 47–53; ibid.18 (1976) 145–146.

    Article  Google Scholar 

  • K. Schütte [1954] Kennzeichnung von Ordnungszahlen durch rekursiv erklärte Funktionen. Math. Ann.127 (1954) 15–32.

    Article  Google Scholar 

  • [1960]Beweistheorie. Springer, Berlin. (Completely revised English edition 1977)

    Google Scholar 

  • [1963] Lecture Notes in Mathematical Logic. Vol. 2. Penn. State University.

  • [1965] Predicative well-orderings.Formal systems and recursive functions (Eds: J.N. Crossley and M.A.E. Dummett), pp. 280–303, North-Holland, Amsterdam.

    Google Scholar 

  • [1968–69] Ein konstruktives System von Ordnungszahlen. Arch. Math. Logik Grundlag.11 (1968) 126–137; ibid.12 (1969) 3–11.

    Article  Google Scholar 

  • [1976] Einführung der NormalfunktionenΘ α ohne Auswahlaxiom und ohne Regularitätsbedingung. Arch. Math. Logik Grundlag.17 (1976) 171–178.

    Google Scholar 

  • J. Stern (Ed.) [1982]Proceedings of the Herbrand Symposium, Logic Colloquium '81. North-Holland, Amsterdam.

    Google Scholar 

  • M. E. Szabo [1969]The collected papers of Gerhard Gentzen. North-Holland, Amsterdam.

    Google Scholar 

  • G. Takeuti [1957] Ordinal diagrams. J. Math. Soc. Japan9 (1957) 386–394.

    Google Scholar 

  • [1975]Proof theory. North-Holland, Amsterdam.

    Google Scholar 

  • J. van de Wiele [1982] Recursive dilators and generalized recursions. In J. Stern [1982], pp. 325–332.

  • J. Vauzeilles [1982] Functors and ordinal notations III: Dilators and gardens. In J. Stern [1982], pp. 333–364.

  • [1985] Functors and ordinal notations IV: The Howard ordinal and the functorΛ. J. Symbolic Logic50 (1985) 331–338.

    Google Scholar 

  • O. Veblen [1908] Continuous increasing functions of finite and transfinite ordinals. Trans. Amer. Math. Soc.9 (1908) 280–292.

    MathSciNet  Google Scholar 

  • S. S. Wainer [1985] The “slow-growing”Π1/2 approach to hierarchies.Proc. Symposia in Pure Math. 42, pp. 487–502, Amer. Math. Soc., Providence, RI.

    Google Scholar 

  • [1985a] Subrecursive ordinals.Recursion Theory Week, pp. 405–418, Lecture Notes in Mathematics, 1141, Springer, Berlin.

    Google Scholar 

  • R. W. Weyrauch [1972] Relations between some-hierarchies of ordinal functions and functionals. Ph. D. thesis, Stanford Univ., California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. K. Schütte on his 75th birthday

The original version of this paper was presented as an invited address by Crossley at the Jubileum in honour of Professor Schütte's 75th birthday in Munich in June 1984. It was subsequently corrected and substantially revised in late 1985 by both authors in Oxford where Crossley held a Visiting Fellowship at All Souls College.

We are indebted to P.H.G. Aczel, W. Buchholz, S. Feferman, G. Jäger, H. Levitz, W. Pohlers, and S.S. Wainer for materials and comments which significantly helped in the preparation of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crossley, J.N., Kister, J.B. Natural well-orderings. Arch math Logik 26, 57–76 (1987). https://doi.org/10.1007/BF02017491

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02017491

Keywords

Navigation