Abstract
Linear sequential machines can sometimes be decomposed into parallel and series connections of smaller linear sequential machines. Necessary and sufficient conditions are given for such decompositions to exist for finite linear sequential machines.
Similar content being viewed by others
References
M. Cohn, Controllability in linear sequential networks,IEEE Trans. Comput. EC-13 (1964) 52–53.
B. Elspas, The theory of autonomous linear sequential networks,IRE Trans. Circuit Theory,CT-6 (1959) 45–60.
H. Gallaire, J. N. Gray, M. A. Harrison andG. T. Herman, Infinite linear sequential machines,J. Comput. System Sci. 2 (1968), 381–419.
F. R. Gantmacher,The Theory of Matrices, Vols. I and II, Chelsea, New York, 1959.
A. Gill,Linear Sequential Circuits, McGraw-Hill, New York, 1966.
A. Ginzburg,Algebraic Theory of Automata, Academic Press, New York, 1968.
M. A. Harrison,Introduction to Switching and Automata Theory, McGraw-Hill, New York, 1965.
J. Hartmanis andR. E. Stearns,Algebraic Structure Theory of Sequential Machines, Prentice-Hall, Englewood Cliffs, N.J., 1966.
W. H. Kautz, (ed.),Linear Sequential Switching Circuits: Selected Technical Papers, Holden-Day, San Francisco, 1965.
K. B. Krohn andJ. L. Rhodes, Algebraic theory of machines I,Trans. Amer. Math. Soc. 116 (1965), 450–464.
B. L. van der Waerden,Modern Algebra, Vols. I and II, Ungar, New York, 1949.
S. Warner,Modern Algebra, Prentice-Hall, Englewood Cliffs, N.J., 1965.
Author information
Authors and Affiliations
Additional information
Research sponsored by the Air Force Office of Scientific Research, Grant AF-AFOSR 639-67, and by the National Science Foundation, Grant GP-6945
Rights and permissions
About this article
Cite this article
Gallaire, H., Harrison, M.A. Decomposition of linear sequential machines. Math. Systems Theory 3, 246–287 (1969). https://doi.org/10.1007/BF01703924
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01703924