iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/BF01582254
On large scale nonlinear Network optimization | Mathematical Programming Skip to main content
Log in

On large scale nonlinear Network optimization

  • Published:
Mathematical Programming Submit manuscript

Abstract

Partial separability and partitioned quasi-Newton updating have been recently introduced and experimented with success in large scale nonlinear optimization, large nonlinear least squares calculations and in large systems of nonlinear equations. It is the purpose of this paper to apply this idea to large dimensional nonlinear network optimization problems. The method proposed thus uses these techniques for handling the cost function, while more classical tools as variable partitioning and specialized data structures are used in handling the network constraints. The performance of a code implementing this method, as well as more classical techniques, is analyzed on several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Beck, L. Ladson and M. Engquist, “A reduced gradient algorithm for nonlinear network problems,”ACM Transactions on Mathematical Software 9 (1983) 57–70.

    Google Scholar 

  2. D.P. Bertsekas, “Projected Newton methods for optimization problems with simple constraints,”SIAM Journal of Control and Optimization 20 (1980) 221–246.

    Google Scholar 

  3. G.H. Bradley, G.G. Brown and G.W. Graves, “Design and implementation of large scale transshipment algorithms,”Management Science 24 (1977) 1–34.

    Google Scholar 

  4. J.V. Burke, J.J. Moré and G. Toraldo, “Convergence properties of trust region methods for linear and convex constraints,” Technical Memorandum 116, Mathematics and Computer Science Division, Argonne National Laboratory (Argonne, 1988).

    Google Scholar 

  5. M. Collins, L. Cooper, R.V. Helgason, J.L. Kennington and L.J. LeBlanc, “Solving the pipe network analysis problem using optimization techniques,”Management Science 24 (1978) 747–780.

    Google Scholar 

  6. A.R. Conn, N.I.M. Gould and Ph.L. Toint, “Global convergence of a class of trust region algorithms for optimization with simple bounds,”SIAM Journal on Numerical Analysis 25 (1988) 433–460.

    Google Scholar 

  7. L. Cooper and J. Kennington, “Steady-state analysis of nonlinear resistive networks using optimization techniques,” Technical Report IEOR 77012, Southern Methodist University (Dallas, 1977).

    Google Scholar 

  8. G.B. Dantzig,Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963).

    Google Scholar 

  9. R.S. Dembo, “A bending backtracking linesearch for constrained optimization,” Yale School of Management, Yale University (New Haven, CT, 1984).

    Google Scholar 

  10. R.S. Dembo, “The performance of NLPNET, a large scale nonlinear network optimizer,”Mathematical Programming Studies 26 (1986) 245–249.

    Google Scholar 

  11. R.S. Dembo, “A primal truncated Newton algorithm with application to large scale nonlinear network optimization,”Mathematical Programming Studies 31 (1987) 43–71.

    Google Scholar 

  12. R.S. Dembo, S.C. Eisenstate and T. Steihaug, “Inexact Newton methods,”SIAM Journal on Numerical Analysis 19(2) (1982) 400–408.

    Google Scholar 

  13. R.S. Dembo and J.G. Klincewicz, “A scaled reduced gradient algorithm for network flow problems with convex separable costs,”Mathematical Programming Studies 15 (1981) 125–147.

    Google Scholar 

  14. R.S. Dembo and T. Steihaug, “Truncated-Newton algorithms for large scale unconstrained optimization,”Mathematical Programming 26 (1983) 190–212.

    Google Scholar 

  15. J.E. Dennis and R.B. Schnabel,Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, NY, 1983).

    Google Scholar 

  16. L.F. Escudero, “A motivation for using the truncated Newton approach in a very large scale nonlinear network problem,”Mathematical Programming Studies 26 (1986) 240–245.

    Google Scholar 

  17. L.F. Escudero, “Performance evaluation of independent superbasic sets on nonlinear replicated networks,”European Journal of Operational Research 23 (1986) 343–355.

    Google Scholar 

  18. R. Fletcher,Practical Methods of Optimization (Wiley, New York, 1980).

    Google Scholar 

  19. M. Florian and S. Nguyen, “An application and validation of equilibrium trip assignment methods,”Transportation Science 10 (1976) 374–389.

    Google Scholar 

  20. J.L. de la Fuente, “Programacion no-lineal: applicaciones en analisis, gestion y planificacion de sistemas electricos,” private communication (1986).

  21. P.E. Gill, W. Murray and M.H. Wright,Practical Optimization (Academic Press, New York, 1981).

    Google Scholar 

  22. F. Glover and D. Klingman, “Basis exchange characterization for the simplex SON algorithm for LP/embedded networks,”Mathematical Programming Studies 24 (1985) 141–157.

    Google Scholar 

  23. A. Griewank and Ph.L. Toint, “Partitioned variable metric updates for large structured optimization problems,”Numerische Mathematik 39 (1982) 119–137.

    Google Scholar 

  24. A. Griewank and Ph.L. Toint, “Local convergence analysis for partitioned quasi-Newton updates,”Numerische Mathematik 39 (1982) 429–448.

    Google Scholar 

  25. A. Griewank and Ph.L. Toint, “On the unconstrained optimization of partially separable functions,” in: M.J.D. Powell, ed.,Nonlinear Optimization 1981 (Academic Press, New York, 1982) pp. 301–312.

    Google Scholar 

  26. A. Griewank and Ph.L. Toint, “Numerical experiments with partially separable optimization problems,” in: D.F. Griffiths, ed.,Numerical Analysis Proceedings Dundee 1983, Lecture Notes in Mathematics, Vol. 1066 (Springer, Berlin, 1984) pp. 203–220.

    Google Scholar 

  27. M.D. Grigoriadis, “An efficient implementation of the network simplex method,”Mathematical Programming Studies 26 (1986) 83–111.

    Google Scholar 

  28. M. Hanscom, V.H. Nguyen and J.J. Strodiot, “A reduced subgradient algorithm for network flow problems with convex nondifferentiable costs,” in: V.F. Demyanov, ed.,Proceedings of the IIASA NDO Workshop, Sopron 1984, Lecture Notes in Economics and Mathematical Systems (Springer, Berlin, 1985) pp. 318–322.

    Google Scholar 

  29. J.L. Kennington and R.V. Helgason,Algorithms for Network Programming (Wiley, New York, 1980).

    Google Scholar 

  30. J.G. Klincewicz, “A Newton method for convex separable network flow problems,”Networks 13 (1983) 427–442.

    Google Scholar 

  31. C. Lawson, R. Hanson, D. Kincaird and F. Krogh, “Basic linear algebra subprograms for Fortran usage,”A.C.M. Transactions on Mathematical Software 5(3) (1979) 308–371.

    Google Scholar 

  32. A. Marin Gracia, “Optimizacion de redes no lineales convexas y separables,” in: J.P. Vilaplana and L.F. Escudero, eds.,Actas I Seminario Internacional de Investigacion Operativa del Pais Vasco, Argitarapen Zerbitzua Euskal Herriko Unibertsitatea (Bilbao, 1987) pp. 173–203.

    Google Scholar 

  33. R.R. Meyer, “Two segment separable programming,”Management Science 15 (1979) 385–395.

    Google Scholar 

  34. B. Murtagh and M. Saunders, “Large scale linearly constrained optimization,”Mathematical Programming 14 (1978) 41–72.

    Google Scholar 

  35. R.E. Rosenthal, “A nonlinear network flow algorithm for maximizing the benefits in a hydroelectric power system,”Operation Research 29 (1981) 763–786.

    Google Scholar 

  36. D.F. Shanno and K.H. Phua, “Matrix conditioning and nonlinear optimization,”Mathematical Programming 14 (1978) 149–160.

    Google Scholar 

  37. Ph.L. Toint, “Towards an efficient sparsity exploiting Newton method for minimization,” in: I.S. Duff, ed.,Sparse Matrices and Their Uses (Academic Press, London, 1981).

    Google Scholar 

  38. Ph.L. Toint, Test problems for partially separable optimization and results for the routine PSPMIN,” Technical Report 83/4, Dept. of Mathematics, FUNDP (Namur, Belgium, 1983).

    Google Scholar 

  39. Ph.L. Toint, “VE08AD, a routine for partially separable optimization with bounded variables,” Harwell Subroutine Library (A.E.R.E., UK, 1983).

    Google Scholar 

  40. Ph.L. Toint, “Numerical solution of large sets of algebraic nonlinear equations,”Mathematics of Computation 46 (1986) 175–189.

    Google Scholar 

  41. Ph.L. Toint. “On large scale nonlinear least squares calculations,”SIAM Journal on Scientific and Statistical Computing 8(3) (1987) 416–435.

    Google Scholar 

  42. Ph.L. Toint, “VE10AD, a routine for large scale nonlinear least squares,” Harwell Subroutine Library (Harwell Laboratory, UK, 1987).

    Google Scholar 

  43. Ph.L. Toint, “Global convergence of a class of trust region methods for nonconvex minimization in Hilbert space,”IMA Journal of Numerical Analysis 8 (1988) 231–252.

    Google Scholar 

  44. D. Tuyttens and J. Teghem, “Théorie des matroides et optimisation combinatoire,”Belgian Journal of Operations Research, Statistics and Computer Science 26(1) (1986) 27–62.

    Google Scholar 

  45. S. Zenios, “Numerical optimization benchmarks on advanced architecture computers,” Report 88-04-03, Decision Sciences Department, The Wharton School, University of Pennsylvania (Philadelphia, PA, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toint, P.L., Tuyttens, D. On large scale nonlinear Network optimization. Mathematical Programming 48, 125–159 (1990). https://doi.org/10.1007/BF01582254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01582254

Key words

Navigation