iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-981-99-8082-6_34
MOC: Multi-modal Sentiment Analysis via Optimal Transport and Contrastive Interactions | SpringerLink
Skip to main content

MOC: Multi-modal Sentiment Analysis via Optimal Transport and Contrastive Interactions

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14448))

Included in the following conference series:

Abstract

Multi-modal sentiment analysis (MSA) aims to utilize information from various modalities to improve the classification of emotions. Most existing studies employ attention mechanisms for modality fusion, overlooking the heterogeneity of different modalities. To address this issue, we propose an approach that leverages optimal transport for modality alignment and fusion, specifically focusing on distributional alignment. However, solely relying on the optimal transport module may result in a deficiency of intra-modal and inter-sample interactions. To tackle this deficiency, we introduce a double-modal contrastive learning module. Specifically, we propose a model MOC (Multi-modal sentiment analysis via Optimal transport and Contrastive interactions), which integrates optimal transport and contrastive learning. Through empirical comparisons on three established multi-modal sentiment analysis datasets, we demonstrate that our approach achieves state-of-the-art performance. Additionally, we conduct extended ablation studies to validate the effectiveness of each proposed module.

Y. Li and Q. Zhu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)

    Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event (2020)

    Google Scholar 

  3. Chen, X., He, K.: Exploring simple siamese representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, 19–25 June 2021, pp. 15750–15758. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  4. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  5. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems (2013)

    Google Scholar 

  6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  7. Gao, T., Yao, X., Chen, D.: Simcse: simple contrastive learning of sentence embeddings. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021 (2021)

    Google Scholar 

  8. Han, W., Chen, H., Poria, S.: Improving multimodal fusion with hierarchical mutual information maximization for multimodal sentiment analysis. In: EMNLP (2021)

    Google Scholar 

  9. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  10. Huang, P., Patrick, M., Hu, J., Neubig, G., Metze, F., Hauptmann, A.: Multilingual multimodal pre-training for zero-shot cross-lingual transfer of vision-language models. In: NAACL-HLT (2021)

    Google Scholar 

  11. Kolouri, S., Naderializadeh, N., Rohde, G.K., Hoffmann, H.: Wasserstein embedding for graph learning. In: ICLR (2021)

    Google Scholar 

  12. Li, J., et al.: Metamask: revisiting dimensional confounder for self-supervised learning. In: ICML (2022)

    Google Scholar 

  13. Liu, X., et al.: Self-supervised learning: generative or contrastive. CoRR (2021)

    Google Scholar 

  14. Lv, F., Chen, X., Huang, Y., Duan, L., Lin, G.: Progressive modality reinforcement for human multimodal emotion recognition from unaligned multimodal sequences. In: CVPR (2021)

    Google Scholar 

  15. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning, ICML (2011)

    Google Scholar 

  16. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  17. Solomon, J., et al.: Convolutional Wasserstein distances: efficient optimal transportation on geometric domains. ACM Trans. Graph. 34(4), 66:1–66:11 (2015)

    Google Scholar 

  18. Tsai, Y.H., Bai, S., Liang, P.P., Kolter, J.Z., Morency, L., Salakhutdinov, R.: Multimodal transformer for unaligned multimodal language sequences. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL (2019)

    Google Scholar 

  19. Wu, Z., Wang, S., Gu, J., Khabsa, M., Sun, F., Ma, H.: CLEAR: contrastive learning for sentence representation. CoRR abs/2012.15466 (2020)

    Google Scholar 

  20. Xu, J., Zhou, H., Gan, C., Zheng, Z., Li, L.: Vocabulary learning via optimal transport for neural machine translation. In: ACL/IJCNLP (2021)

    Google Scholar 

  21. Xu, N., Mao, W., Chen, G.: A co-memory network for multimodal sentiment analysis. In: SIGIR (2018)

    Google Scholar 

  22. Yan, Y., Li, R., Wang, S., Zhang, F., Wu, W., Xu, W.: Consert: a contrastive framework for self-supervised sentence representation transfer. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) ACL/IJCNLP (2021)

    Google Scholar 

  23. Yang, X.: Multimodal sentiment detection based on multi-channel graph neural networks. In: ACL (2021)

    Google Scholar 

  24. Yang, X., Feng, S., Wang, D., Zhang, Y.: Image-text multimodal emotion classification via multi-view attentional network. IEEE Trans. Multim. 23, 4014–4026 (2021)

    Article  Google Scholar 

  25. Yu, W., Xu, H., Yuan, Z., Wu, J.: Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis. In: AAAI (2021)

    Google Scholar 

  26. Yuan, X., et al.: Multimodal contrastive training for visual representation learning. In: CVPR (2021)

    Google Scholar 

  27. Zadeh, A., Liang, P.P., Poria, S., Vij, P., Cambria, E., Morency, L.: Multi-attention recurrent network for human communication comprehension. In: AAAI (2018)

    Google Scholar 

  28. Li, J., Qiang, W., Zheng, C., Su, B., Xiong, H.: Metaug: contrastive learning via meta feature augmentation. In: International Conference on Machine Learning, pp. 12964–12978. PMLR (2022)

    Google Scholar 

  29. Chen, Y.: Convolutional neural network for sentence classification. Master’s thesis, University of Waterloo (2015)

    Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  31. Zhou, P., et al.: Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 207–212 (2016)

    Google Scholar 

  32. Li, J., et al.: Modeling multiple views via implicitly preserving global consistency and local complementarity. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  33. Qiang, W., Li, J., Zheng, C., Su, B., Xiong, H.: Interventional contrastive learning with meta semantic regularizer. In: International Conference on Machine Learning, pp. 18018–18030. PMLR (2022)

    Google Scholar 

  34. Cao, Z., Xu, Q., Yang, Z., He, Y., Cao, X., Huang, Q.: Otkge: multi-modal knowledge graph embeddings via optimal transport. Adv. Neural. Inf. Process. Syst. 35, 39090–39102 (2022)

    Google Scholar 

  35. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  36. Li, Z., Xu, B., Zhu, C., Zhao, T.: CLMLF: a contrastive learning and multi-layer fusion method for multimodal sentiment detection. arXiv preprint arXiv:2204.05515 (2022)

  37. Xu, N.: Analyzing multimodal public sentiment based on hierarchical semantic attentional network. In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 152–154. IEEE (2017)

    Google Scholar 

  38. Xu, N., Mao, W.: Multisentinet: a deep semantic network for multimodal sentiment analysis. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2399–2402 (2017)

    Google Scholar 

  39. Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models with monolingual data. arXiv preprint arXiv:1511.06709 (2015)

Download references

Acknowledgements

This work is supported by the National Key R &D Program of China (2022YFC3103800) and National Natural Science Foundation of China (62101552).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhu, Q., He, H., Gu, Z., Zheng, C. (2024). MOC: Multi-modal Sentiment Analysis via Optimal Transport and Contrastive Interactions. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14448. Springer, Singapore. https://doi.org/10.1007/978-981-99-8082-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8082-6_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8081-9

  • Online ISBN: 978-981-99-8082-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics