iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-981-99-8067-3_43
Fast and Efficient Brain Extraction with Recursive MLP Based 3D UNet | SpringerLink
Skip to main content

Fast and Efficient Brain Extraction with Recursive MLP Based 3D UNet

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 909 Accesses

Abstract

Extracting brain from other non-brain tissues is an essential step in neuroimage analyses such as brain volume estimation. The transformers and 3D UNet based methods achieve strong performance using attention and 3D convolutions. They normally have complex architecture and are thus computationally slow. Consequently, they can hardly be deployed in computational resource-constrained environments. To achieve rapid segmentation, the most recent work UNeXt reduces convolution filters and also presents the Multilayer Perception (MLP) blocks that exploit simpler and linear MLP operations. To further boost performance, it shifts the feature channels in MLP block so as to focus on learning local dependencies. However, it performs segmentation on 2D medical images rather than 3D volumes. In this paper, we propose a recursive MLP based 3D UNet to efficiently extract brain from 3D head volume. Our network involves 3D convolution blocks and MLP blocks to capture both long range information and local dependencies. Meanwhile, we also leverage the simplicity of MLPs to enhance computational efficiency. Unlike UNeXt extracting one locality, we apply several shifts to capture multiple localities representing different local dependencies and then introduce a recursive design to aggregate them. To save computational cost, the shifts do not introduce any parameters and the parameters are also shared across recursions. Extensive experiments on two public datasets demonstrate the superiority of our approach against other state-of-the-art methods with respect to both accuracy and CPU inference time.

G. Shangguan and H. Xiong—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The Internet Brain Segmentation Repository (IBSR). https://www.nitrc.org/projects/ibsr

  2. The Neurofeedback Skull-stripped (NFBS) repository. https://preprocessed-connectomes-project.org/NFB_skullstripped/

  3. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Cooley, C.Z., et al.: A portable scanner for magnetic resonance imaging of the brain. Nat. Biomed. Eng. 5(3), 229–239 (2021)

    Article  Google Scholar 

  6. Fatima, A., Madni, T.M., Anwar, F., Janjua, U.I., Sultana, N.: Automated 2D slice-based skull stripping multi-view ensemble model on NFBS and IBSR datasets. J. Digit. Imaging 35(2), 374–384 (2022)

    Article  Google Scholar 

  7. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  8. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  9. Hwang, H., Rehman, H.Z.U., Lee, S.: 3D U-Net for skull stripping in brain MRI. Appl. Sci. 9(3), 569 (2019)

    Article  Google Scholar 

  10. Ibtehaz, N., Rahman, M.S.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  11. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25

    Chapter  Google Scholar 

  12. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  13. Lian, D., Yu, Z., Sun, X., Gao, S.: AS-MLP: an axial shifted MLP architecture for vision. In: International Conference on Learning Representations (ICLR), pp. 1–19 (2022)

    Google Scholar 

  14. Mazurek, M.H., et al.: Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage. Nat. Commun. 12(1), 1–11 (2021)

    Article  Google Scholar 

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  16. Nie, D., Wang, L., Adeli, E., Lao, C., Lin, W., Shen, D.: 3-D fully convolutional networks for multimodal isointense infant brain image segmentation. IEEE Trans. Cybern. 49(3), 1123–1136 (2018)

    Article  Google Scholar 

  17. Pan, S., et al.: Abdomen CT multi-organ segmentation using token-based MLP-mixer. Med. Phys. 50, 3027–3038 (2022)

    Article  Google Scholar 

  18. Qiu, Z., Yao, T., Ngo, C.W., Mei, T.: MLP-3D: a MLP-Like 3D architecture with grouped time mixing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3062–3072 (2022)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Sheth, K.N., et al.: Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol. 78(1), 41–47 (2021)

    Article  Google Scholar 

  21. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  22. Sun, L., Shao, W., Zhu, Q., Wang, M., Li, G., Zhang, D.: Multi-scale multi-hierarchy attention convolutional neural network for fetal brain extraction. Pattern Recogn. 133, 109029 (2023)

    Article  Google Scholar 

  23. Tolstikhin, I.O., et al.: MLP-Mixer: an all-MLP architecture for vision. Adv. Neural. Inf. Process. Syst. 34, 24261–24272 (2021)

    Google Scholar 

  24. Valanarasu, J.M.J., Patel, V.M.: UNeXt: MLP-based rapid medical image segmentation network. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 23–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_3

    Chapter  Google Scholar 

  25. Wang, Z., Zou, N., Shen, D., Ji, S.: Non-local U-nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6315–6322 (2020)

    Google Scholar 

  26. Yu, T., Li, X., Cai, Y., Sun, M., Li, P.: S\(^2\)-MLP spatial-shift MLP architecture for vision. In: the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 297–306 (2022)

    Google Scholar 

  27. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 62072160) and Science and Technology Research Project of Henan Province (No. 232102211024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualei Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shangguan, G., Xiong, H., Liu, D., Shen, H. (2024). Fast and Efficient Brain Extraction with Recursive MLP Based 3D UNet. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics