iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-981-99-4402-6_9
A Container Migration Method for Edge Environments Based on Malicious Traffic Detection | SpringerLink
Skip to main content

A Container Migration Method for Edge Environments Based on Malicious Traffic Detection

  • Conference paper
  • First Online:
Service Science (ICSS 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1844))

Included in the following conference series:

  • 442 Accesses

Abstract

Edge computing reduces network latency and improves service responsiveness by bringing services down to the edge. Compared to servers in the cloud center, edge devices are deployed more decentralized. Also, due to size and resource constraints, edge devices are difficult to manage or update security patches uniformly in real time. It makes it easier for malicious traffic to affect the security of the edge environment. In this paper, we propose a container migration method based on malicious traffic detection. We build a graph using the graph structure features of network flows to instantly detect the attacked nodes in the network and obtain the list of container services to be migrated. Considering energy consumption and network load balancing, a genetic algorithm based on non-dominated ranking is used to generate a strategy for container migration for edge networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE 107, 1655–1674 (2019). https://doi.org/10.1109/JPROC.2019.2921977

    Article  Google Scholar 

  2. Angrishi, K.: Turning internet of things (IoT) into internet of vulnerabilities (IoV): IoT botnets (2017). http://arxiv.org/abs/1702.03681, https://doi.org/10.48550/arXiv.1702.03681

  3. Pahl, C.: Containerization and the PaaS cloud. IEEE Cloud Comput. 2, 24–31 (2015). https://doi.org/10.1109/MCC.2015.51

    Article  Google Scholar 

  4. Resource allocation for edge computing with multiple tenant configurations \(|\) Proceedings of the 35th Annual ACM Symposium on Applied Computing. https://dl.acm.org/doi/abs/10.1145/3341105.3374026. Accessed 20 Feb 2023

  5. Wang, S., Xu, J., Zhang, N., Liu, Y.: A survey on service migration in mobile edge computing. IEEE Access 6, 23511–23528 (2018). https://doi.org/10.1109/ACCESS.2018.2828102

    Article  Google Scholar 

  6. Govindaraj, K., Artemenko, A.: Container live migration for latency critical industrial applications on edge computing. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 83–90. IEEE, Turin (2018). https://doi.org/10.1109/ETFA.2018.8502659

  7. Doshi, R., Apthorpe, N., Feamster, N.: Machine learning DDoS detection for consumer internet of things devices. In: 2018 IEEE Security and Privacy Workshops (SPW), pp. 29–35 (2018). https://doi.org/10.1109/SPW.2018.00013

  8. McDermott, C.D., Majdani, F., Petrovski, A.V.: Botnet detection in the internet of things using deep learning approaches. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018). https://doi.org/10.1109/IJCNN.2018.8489489

  9. Su, J., Vasconcellos, D.V., Prasad, S., Sgandurra, D., Feng, Y., Sakurai, K.: Lightweight classification of IoT malware based on image recognition. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 664–669 (2018). https://doi.org/10.1109/COMPSAC.2018.10315

  10. Bekerman, D., Shapira, B., Rokach, L., Bar, A.: Unknown malware detection using network traffic classification. In: 2015 IEEE Conference on Communications and Network Security (CNS), pp. 134–142 (2015). https://doi.org/10.1109/CNS.2015.7346821

  11. Busch, J., Kocheturov, A., Tresp, V., Seidl, T.: NF-GNN: network flow graph neural networks for malware detection and classification. In: 33rd International Conference on Scientific and Statistical Database Management, pp. 121–132. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3468791.3468814

  12. Boyaci, O., et al.: Graph neural networks based detection of stealth false data injection attacks in smart grids. IEEE Syst. J. 16, 2946–2957 (2022). https://doi.org/10.1109/JSYST.2021.3109082

    Article  Google Scholar 

  13. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs (2018). http://arxiv.org/abs/1706.02216, https://doi.org/10.48550/arXiv.1706.02216

  14. Zhang, W., Zhang, Y., Xu, L., Zhou, J., Liu, Y., Gu, M., Liu, X., Yang, S.: Modeling IoT equipment with graph neural networks. IEEE Access 7, 32754–32764 (2019). https://doi.org/10.1109/ACCESS.2019.2902865

    Article  Google Scholar 

  15. Shrivastava, N., Bhagat, A., Nair, R.: Graph powered machine learning in smart sensor networks. In: Singh, U., Abraham, A., Kaklauskas, A., Hong, T.-P. (eds.) Smart Sensor Networks. SBD, vol. 92, pp. 209–226. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-77214-7_9

    Chapter  Google Scholar 

  16. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE Cloud Comput. 1, 81–84 (2014). https://doi.org/10.1109/MCC.2014.51

    Article  Google Scholar 

  17. Ahmad, I., AlFailakawi, M.G., AlMutawa, A., Alsalman, L.: Container scheduling techniques: a survey and assessment. J. King Saud Univ. - Comput. Inf. Sci. 34, 3934–3947 (2022). https://doi.org/10.1016/j.jksuci.2021.03.002

    Article  Google Scholar 

  18. Zhou, R., Li, Z., Wu, C.: Scheduling frameworks for cloud container services. IEEE/ACM Trans. Netw. 26, 436–450 (2018). https://doi.org/10.1109/TNET.2017.2781200

    Article  Google Scholar 

  19. Kaur, K., Garg, S., Kaddoum, G., Ahmed, S.H., Atiquzzaman, M.: KEIDS: kubernetes-based energy and interference driven scheduler for industrial iot in edge-cloud eco-system. IEEE Internet Things J. 7, 4228–4237 (2020). https://doi.org/10.1109/JIOT.2019.2939534

    Article  Google Scholar 

  20. Wen, Y., Li, Z., Jin, S., Lin, C., Liu, Z.: Energy-efficient virtual resource dynamic integration method in cloud computing. IEEE Access 5, 12214–12223 (2017). https://doi.org/10.1109/ACCESS.2017.2721548

    Article  Google Scholar 

  21. Fan, G., Chen, L., Yu, H., Qi, W.: Multi-objective optimization of container-based microservice scheduling in edge computing. Comput. Sci. Inf. Syst. 18, 23–42 (2021)

    Article  Google Scholar 

  22. Vhatkar, K.N., Bhole, G.P.: Optimal container resource allocation in cloud architecture: a new hybrid model. J. King Saud Univ. - Comput. Inf. Sci. 34, 1906–1918 (2022). https://doi.org/10.1016/j.jksuci.2019.10.009

    Article  Google Scholar 

  23. Akhtar, N., Raza, A., Ishakian, V., Matta, I.: COSE: configuring serverless functions using statistical learning. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 129–138 (2020). https://doi.org/10.1109/INFOCOM41043.2020.9155363

  24. Mehta, H.K., Harvey, P., Rana, O., Buyya, R., Varghese, B.: WattsApp: power-aware container scheduling. In: 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), pp. 79–90 (2020). https://doi.org/10.1109/UCC48980.2020.00027

  25. Liu, J., Wang, S., Zhou, A., Xu, J., Yang, F.: SLA-driven container consolidation with usage prediction for green cloud computing. Front. Comput. Sci. 14, 42–52 (2020). https://doi.org/10.1007/s11704-018-7172-3

    Article  Google Scholar 

  26. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, p. 10. IEEE Computer Society, Maui (2000). https://doi.org/10.1109/HICSS.2000.926982

  27. Peng, K., Huang, H., Zhao, B., Jolfaei, A., Xu, X., Bilal, M.: Intelligent computation offloading and resource allocation in IIoT with end-edge-cloud computing using NSGA-III. IEEE Trans. Netw. Sci. EngD. 1 (2022). https://doi.org/10.1109/TNSE.2022.3155490

  28. Lo, W.W., Layeghy, S., Sarhan, M., Gallagher, M., Portmann, M.: E-GraphSAGE: a graph neural network based intrusion detection system for IoT. In: NOMS 2022–2022 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9 (2022). https://doi.org/10.1109/NOMS54207.2022.9789878

  29. Chen, C., Li, Q., Chen, L., Liang, Y., Huang, H.: An improved GraphSAGE to detect power system anomaly based on time-neighbor feature. Energy Rep. 9, 930–937 (2023). https://doi.org/10.1016/j.egyr.2022.11.116

    Article  Google Scholar 

  30. Al-Hawawreh, M., Sitnikova, E., Aboutorab, N.: X-IIoTID: a connectivity-agnostic and device-agnostic intrusion data set for industrial internet of things. IEEE Internet Things J. 9, 3962–3977 (2022). https://doi.org/10.1109/JIOT.2021.3102056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangbing Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Zhou, Z., Li, Y. (2023). A Container Migration Method for Edge Environments Based on Malicious Traffic Detection. In: Wang, Z., Wang, S., Xu, H. (eds) Service Science. ICSS 2023. Communications in Computer and Information Science, vol 1844. Springer, Singapore. https://doi.org/10.1007/978-981-99-4402-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4402-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4401-9

  • Online ISBN: 978-981-99-4402-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics