Abstract
Edge computing reduces network latency and improves service responsiveness by bringing services down to the edge. Compared to servers in the cloud center, edge devices are deployed more decentralized. Also, due to size and resource constraints, edge devices are difficult to manage or update security patches uniformly in real time. It makes it easier for malicious traffic to affect the security of the edge environment. In this paper, we propose a container migration method based on malicious traffic detection. We build a graph using the graph structure features of network flows to instantly detect the attacked nodes in the network and obtain the list of container services to be migrated. Considering energy consumption and network load balancing, a genetic algorithm based on non-dominated ranking is used to generate a strategy for container migration for edge networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE 107, 1655–1674 (2019). https://doi.org/10.1109/JPROC.2019.2921977
Angrishi, K.: Turning internet of things (IoT) into internet of vulnerabilities (IoV): IoT botnets (2017). http://arxiv.org/abs/1702.03681, https://doi.org/10.48550/arXiv.1702.03681
Pahl, C.: Containerization and the PaaS cloud. IEEE Cloud Comput. 2, 24–31 (2015). https://doi.org/10.1109/MCC.2015.51
Resource allocation for edge computing with multiple tenant configurations \(|\) Proceedings of the 35th Annual ACM Symposium on Applied Computing. https://dl.acm.org/doi/abs/10.1145/3341105.3374026. Accessed 20 Feb 2023
Wang, S., Xu, J., Zhang, N., Liu, Y.: A survey on service migration in mobile edge computing. IEEE Access 6, 23511–23528 (2018). https://doi.org/10.1109/ACCESS.2018.2828102
Govindaraj, K., Artemenko, A.: Container live migration for latency critical industrial applications on edge computing. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 83–90. IEEE, Turin (2018). https://doi.org/10.1109/ETFA.2018.8502659
Doshi, R., Apthorpe, N., Feamster, N.: Machine learning DDoS detection for consumer internet of things devices. In: 2018 IEEE Security and Privacy Workshops (SPW), pp. 29–35 (2018). https://doi.org/10.1109/SPW.2018.00013
McDermott, C.D., Majdani, F., Petrovski, A.V.: Botnet detection in the internet of things using deep learning approaches. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018). https://doi.org/10.1109/IJCNN.2018.8489489
Su, J., Vasconcellos, D.V., Prasad, S., Sgandurra, D., Feng, Y., Sakurai, K.: Lightweight classification of IoT malware based on image recognition. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 664–669 (2018). https://doi.org/10.1109/COMPSAC.2018.10315
Bekerman, D., Shapira, B., Rokach, L., Bar, A.: Unknown malware detection using network traffic classification. In: 2015 IEEE Conference on Communications and Network Security (CNS), pp. 134–142 (2015). https://doi.org/10.1109/CNS.2015.7346821
Busch, J., Kocheturov, A., Tresp, V., Seidl, T.: NF-GNN: network flow graph neural networks for malware detection and classification. In: 33rd International Conference on Scientific and Statistical Database Management, pp. 121–132. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3468791.3468814
Boyaci, O., et al.: Graph neural networks based detection of stealth false data injection attacks in smart grids. IEEE Syst. J. 16, 2946–2957 (2022). https://doi.org/10.1109/JSYST.2021.3109082
Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs (2018). http://arxiv.org/abs/1706.02216, https://doi.org/10.48550/arXiv.1706.02216
Zhang, W., Zhang, Y., Xu, L., Zhou, J., Liu, Y., Gu, M., Liu, X., Yang, S.: Modeling IoT equipment with graph neural networks. IEEE Access 7, 32754–32764 (2019). https://doi.org/10.1109/ACCESS.2019.2902865
Shrivastava, N., Bhagat, A., Nair, R.: Graph powered machine learning in smart sensor networks. In: Singh, U., Abraham, A., Kaklauskas, A., Hong, T.-P. (eds.) Smart Sensor Networks. SBD, vol. 92, pp. 209–226. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-77214-7_9
Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE Cloud Comput. 1, 81–84 (2014). https://doi.org/10.1109/MCC.2014.51
Ahmad, I., AlFailakawi, M.G., AlMutawa, A., Alsalman, L.: Container scheduling techniques: a survey and assessment. J. King Saud Univ. - Comput. Inf. Sci. 34, 3934–3947 (2022). https://doi.org/10.1016/j.jksuci.2021.03.002
Zhou, R., Li, Z., Wu, C.: Scheduling frameworks for cloud container services. IEEE/ACM Trans. Netw. 26, 436–450 (2018). https://doi.org/10.1109/TNET.2017.2781200
Kaur, K., Garg, S., Kaddoum, G., Ahmed, S.H., Atiquzzaman, M.: KEIDS: kubernetes-based energy and interference driven scheduler for industrial iot in edge-cloud eco-system. IEEE Internet Things J. 7, 4228–4237 (2020). https://doi.org/10.1109/JIOT.2019.2939534
Wen, Y., Li, Z., Jin, S., Lin, C., Liu, Z.: Energy-efficient virtual resource dynamic integration method in cloud computing. IEEE Access 5, 12214–12223 (2017). https://doi.org/10.1109/ACCESS.2017.2721548
Fan, G., Chen, L., Yu, H., Qi, W.: Multi-objective optimization of container-based microservice scheduling in edge computing. Comput. Sci. Inf. Syst. 18, 23–42 (2021)
Vhatkar, K.N., Bhole, G.P.: Optimal container resource allocation in cloud architecture: a new hybrid model. J. King Saud Univ. - Comput. Inf. Sci. 34, 1906–1918 (2022). https://doi.org/10.1016/j.jksuci.2019.10.009
Akhtar, N., Raza, A., Ishakian, V., Matta, I.: COSE: configuring serverless functions using statistical learning. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 129–138 (2020). https://doi.org/10.1109/INFOCOM41043.2020.9155363
Mehta, H.K., Harvey, P., Rana, O., Buyya, R., Varghese, B.: WattsApp: power-aware container scheduling. In: 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), pp. 79–90 (2020). https://doi.org/10.1109/UCC48980.2020.00027
Liu, J., Wang, S., Zhou, A., Xu, J., Yang, F.: SLA-driven container consolidation with usage prediction for green cloud computing. Front. Comput. Sci. 14, 42–52 (2020). https://doi.org/10.1007/s11704-018-7172-3
Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, p. 10. IEEE Computer Society, Maui (2000). https://doi.org/10.1109/HICSS.2000.926982
Peng, K., Huang, H., Zhao, B., Jolfaei, A., Xu, X., Bilal, M.: Intelligent computation offloading and resource allocation in IIoT with end-edge-cloud computing using NSGA-III. IEEE Trans. Netw. Sci. EngD. 1 (2022). https://doi.org/10.1109/TNSE.2022.3155490
Lo, W.W., Layeghy, S., Sarhan, M., Gallagher, M., Portmann, M.: E-GraphSAGE: a graph neural network based intrusion detection system for IoT. In: NOMS 2022–2022 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9 (2022). https://doi.org/10.1109/NOMS54207.2022.9789878
Chen, C., Li, Q., Chen, L., Liang, Y., Huang, H.: An improved GraphSAGE to detect power system anomaly based on time-neighbor feature. Energy Rep. 9, 930–937 (2023). https://doi.org/10.1016/j.egyr.2022.11.116
Al-Hawawreh, M., Sitnikova, E., Aboutorab, N.: X-IIoTID: a connectivity-agnostic and device-agnostic intrusion data set for industrial internet of things. IEEE Internet Things J. 9, 3962–3977 (2022). https://doi.org/10.1109/JIOT.2021.3102056
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, J., Zhou, Z., Li, Y. (2023). A Container Migration Method for Edge Environments Based on Malicious Traffic Detection. In: Wang, Z., Wang, S., Xu, H. (eds) Service Science. ICSS 2023. Communications in Computer and Information Science, vol 1844. Springer, Singapore. https://doi.org/10.1007/978-981-99-4402-6_9
Download citation
DOI: https://doi.org/10.1007/978-981-99-4402-6_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-4401-9
Online ISBN: 978-981-99-4402-6
eBook Packages: Computer ScienceComputer Science (R0)