Abstract
The detection of ships using Synthetic Aperture Radar (SAR) imagery is crucial in military and civilian sectors, yet balancing speed and accuracy remains challenging. Existing lightweight models aim to reduce parameter count and computational load but often compromise accuracy, leading to increased false alarms. Complex backgrounds, especially near-shore ships against intricate backgrounds, exacerbate SAR ship detection difficulties. This paper introduces an enhanced lightweight ship detection method, GSE-ships, based on the YOLOv5s model, augmented with an attention mechanism. Initially, the proposed GhostMSENet lightweight model facilitates rapid and precise localization and detection of ships within SAR images to fulfill the requirement for real-time detection. Subsequently, integration of the improved attention mechanism enhances the overall detection efficacy of ship objects amidst complex backgrounds post-model training. Lastly, the adoption of the novel ablation function, ECIoU, promotes early convergence and augments ship object detection capabilities. Experimental findings conducted on the SAR ship detection dataset HRSID demonstrate that the enhanced GSE-ships model achieves a reduction in computational burden by 7.97% while enhancing average accuracy by 3.1% compared to YOLOv5s. These results underscore its heightened potential for real-time ship detection applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Graziano, M.: Preliminary results of ship detection technique by wake pattern recognition in SAR images. Remote. Sens. 12, 2869 (2020)
Kim, D.J., Moon, W.M., Kim, Y.S.: Application of terrasar-x data for emergent oil-spill monitoring. IEEE Trans. Geosci. & Remote. Sens. (2010)
Steenson, B.O.: Detection performance of a mean-level threshold. IEEE Trans. Aerosp. & Electron. Syst. AES-4 (4), 529–534 (1968)
Novak, L.M., Burl, M.C., Irving, W.W.: Optimal polarimetric processing for enhanced target detection. IEEE Trans. Aerosp. Electron. Syst. 29(1), 234–244 (1993)
Lim, H., Chae, D., Yoo, J.H., Kwon, K.I.: Template matching-based target recognition algorithm development and verification using SAR images. J. Korea Inst. Mil. Sci. Technol. 17(3), 364–377 (2014)
Grosso, E., Guida, R.: A new automatic ship wake detection for sentinel-1 imagery. In: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 1259–1262 (2020)
He, Y., He, H., Xu, Y.: Marine multi-target detection based on improved wavelet transform. In: 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), pp. 804–811 (2019)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)
Cai, Z., Vasconcelos, N.: Cascade r-cnn: delving into high quality object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)
Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra r-cnn: towards balanced learning for object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Liu, W., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Anguelov, D., Berg, A.C.: Ssd: single shot multibox detector. In: Computer Vision–ECCV 2016. Springer International Publishing (2016)
Terven, J.R., Esparza, D.M.C., Romero-González, J.-A.: A comprehensive review of yolo architectures in computer vision: from yolov1 to yolov8 and yolo-nas. Mach. Learn. Knowl. Extr. 5, 1680–1716 (2023)
Seol, S., Ahn, J., Lee, H., Kim, Y., Chung, J.: SSP based underwater CIR estimation with s-BiFPN. ICT Express 8, 44–49 (2022)
Ren, K., Tao, Q., Han, H.: A lightweight object detection network in low-light conditions based on depthwise separable pyramid network and attention mechanism on embedded platforms. J. Frankl. Inst. 4427–4455 (2023)
Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Efficient convolutional neural networks for mobile vision applications. Mobilenets (2017)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2018)
Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., Ren, Q.: Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles (2022). arXiv:abs/2206.02424
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more features from cheap operations. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1577–1586 (2020)
Tang, Y., Han, K., Guo, J., Xu, C., Xu, C., Wang, Y.: Ghostnetv2: enhance cheap operation with long-range attention (2022). arXiv:abs/2211.12905
Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13708–13717 (2021)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.-S.: Cbam: Convolutional block attention module (2018). arXiv:abs/1807.06521
Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. Neural Inf. Process. Syst. (2017)
Hu, J., Shen, L., Sun, G., Albanie, S.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. (99), (2017)
Wang, Q., Wu, B., Zhu, P., Li, P., Hu, Q.: Eca-net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020)
Dai, H., Lan, D., Wang, Y., Wang, Z.: A modified CFAR algorithm based on object proposals for ship target detection in SAR images. IEEE Geosci. Remote. Sens. Lett. 13(12), 1925–1929 (2016)
Wang, C., Bi, F., Chen, L., Chen, J.: A novel threshold template algorithm for ship detection in high-resolution SAR images. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 100–103 (2016)
Li, Y., Liu, W., Qi, R.: Multilevel pyramid feature extraction and task decoupling network for SAR ship detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 17, 3560–3570 (2024)
Sun, Z., Dai, M., Xiangguang Leng, Yu., Lei, B.X., Ji, K., Kuang, G.: An anchor-free detection method for ship targets in high-resolution SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14, 7799–7816 (2021)
Chai, B., Chen, L., Shi, H., He, C.: Marine ship detection method for SAR image based on improved faster RCNN. In: 2021 SAR in Big Data Era (BIGSARDATA), pp. 1–4 (2021)
Chen, S., Zhan, R., Wang, W., Zhang, J.: Learning slimming SAR ship object detector through network pruning and knowledge distillation. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14, 1267–1282 (2021)
Li, Q., Xiao, D., Shi, F.: A decoupled head and coordinate attention detection method for ship targets in SAR images. IEEE Access 10, 128562–128578 (2022)
Zhao, X., Song, Y., Shi, S., Li, S.: Research on lightweight ship target detection algorithm based on improved yolov5. In: 2023 IEEE 11th International Conference on Information, Communication and Networks (ICICN), pp. 728–732 (2023)
Luo, Y., Li, M., Wen, G., Tan, Y., Shi, C.: Ship-yolo: a lightweight synthetic aperture radar ship detection model based on yolov8n algorithm. IEEE Access 12, 37030–37041 (2024)
Jiahui, Y., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: Unitbox: an advanced object detection network. In: ACM (2016)
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Loss, D.R.D.-I.: Faster and better learning for bounding box regression (2019)
Zhang, Y.-F., Zhang, Z., Jia, Z., Wang, L., Tan, T., Ren, W.: Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing (2022)
Chen, X., Lian, Q., Chen, X., Shang, J.: Surface crack detection method for coal rock based on improved yolov5. Appl. Sci. (2022)
Wei, S., Zeng, X., Qizhe, Q., Wang, M., Hao, S., Shi, J.: HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 8, 120234–120254 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Huo, L., Li, H., Wang, W., Gao, X., Wei, Y., Chen, K. (2025). GSE-Ships: Ship Detection Using Optimized Lightweight Networks and Attention Mechanisms. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15040. Springer, Singapore. https://doi.org/10.1007/978-981-97-8792-0_36
Download citation
DOI: https://doi.org/10.1007/978-981-97-8792-0_36
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8791-3
Online ISBN: 978-981-97-8792-0
eBook Packages: Computer ScienceComputer Science (R0)