iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-981-97-8792-0_36
GSE-Ships: Ship Detection Using Optimized Lightweight Networks and Attention Mechanisms | SpringerLink
Skip to main content

GSE-Ships: Ship Detection Using Optimized Lightweight Networks and Attention Mechanisms

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Abstract

The detection of ships using Synthetic Aperture Radar (SAR) imagery is crucial in military and civilian sectors, yet balancing speed and accuracy remains challenging. Existing lightweight models aim to reduce parameter count and computational load but often compromise accuracy, leading to increased false alarms. Complex backgrounds, especially near-shore ships against intricate backgrounds, exacerbate SAR ship detection difficulties. This paper introduces an enhanced lightweight ship detection method, GSE-ships, based on the YOLOv5s model, augmented with an attention mechanism. Initially, the proposed GhostMSENet lightweight model facilitates rapid and precise localization and detection of ships within SAR images to fulfill the requirement for real-time detection. Subsequently, integration of the improved attention mechanism enhances the overall detection efficacy of ship objects amidst complex backgrounds post-model training. Lastly, the adoption of the novel ablation function, ECIoU, promotes early convergence and augments ship object detection capabilities. Experimental findings conducted on the SAR ship detection dataset HRSID demonstrate that the enhanced GSE-ships model achieves a reduction in computational burden by 7.97% while enhancing average accuracy by 3.1% compared to YOLOv5s. These results underscore its heightened potential for real-time ship detection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graziano, M.: Preliminary results of ship detection technique by wake pattern recognition in SAR images. Remote. Sens. 12, 2869 (2020)

    Article  Google Scholar 

  2. Kim, D.J., Moon, W.M., Kim, Y.S.: Application of terrasar-x data for emergent oil-spill monitoring. IEEE Trans. Geosci. & Remote. Sens. (2010)

    Google Scholar 

  3. Steenson, B.O.: Detection performance of a mean-level threshold. IEEE Trans. Aerosp. & Electron. Syst. AES-4 (4), 529–534 (1968)

    Google Scholar 

  4. Novak, L.M., Burl, M.C., Irving, W.W.: Optimal polarimetric processing for enhanced target detection. IEEE Trans. Aerosp. Electron. Syst. 29(1), 234–244 (1993)

    Article  Google Scholar 

  5. Lim, H., Chae, D., Yoo, J.H., Kwon, K.I.: Template matching-based target recognition algorithm development and verification using SAR images. J. Korea Inst. Mil. Sci. Technol. 17(3), 364–377 (2014)

    Google Scholar 

  6. Grosso, E., Guida, R.: A new automatic ship wake detection for sentinel-1 imagery. In: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 1259–1262 (2020)

    Google Scholar 

  7. He, Y., He, H., Xu, Y.: Marine multi-target detection based on improved wavelet transform. In: 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), pp. 804–811 (2019)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  9. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  11. Cai, Z., Vasconcelos, N.: Cascade r-cnn: delving into high quality object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  12. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra r-cnn: towards balanced learning for object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  13. Liu, W., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Anguelov, D., Berg, A.C.: Ssd: single shot multibox detector. In: Computer Vision–ECCV 2016. Springer International Publishing (2016)

    Google Scholar 

  14. Terven, J.R., Esparza, D.M.C., Romero-González, J.-A.: A comprehensive review of yolo architectures in computer vision: from yolov1 to yolov8 and yolo-nas. Mach. Learn. Knowl. Extr. 5, 1680–1716 (2023)

    Article  Google Scholar 

  15. Seol, S., Ahn, J., Lee, H., Kim, Y., Chung, J.: SSP based underwater CIR estimation with s-BiFPN. ICT Express 8, 44–49 (2022)

    Article  Google Scholar 

  16. Ren, K., Tao, Q., Han, H.: A lightweight object detection network in low-light conditions based on depthwise separable pyramid network and attention mechanism on embedded platforms. J. Frankl. Inst. 4427–4455 (2023)

    Google Scholar 

  17. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  18. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Efficient convolutional neural networks for mobile vision applications. Mobilenets (2017)

    Google Scholar 

  19. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2018)

    Google Scholar 

  20. Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., Ren, Q.: Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles (2022). arXiv:abs/2206.02424

  21. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more features from cheap operations. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1577–1586 (2020)

    Google Scholar 

  22. Tang, Y., Han, K., Guo, J., Xu, C., Xu, C., Wang, Y.: Ghostnetv2: enhance cheap operation with long-range attention (2022). arXiv:abs/2211.12905

  23. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13708–13717 (2021)

    Google Scholar 

  24. Woo, S., Park, J., Lee, J.-Y., Kweon, I.-S.: Cbam: Convolutional block attention module (2018). arXiv:abs/1807.06521

  25. Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. Neural Inf. Process. Syst. (2017)

    Google Scholar 

  26. Hu, J., Shen, L., Sun, G., Albanie, S.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. (99), (2017)

    Google Scholar 

  27. Wang, Q., Wu, B., Zhu, P., Li, P., Hu, Q.: Eca-net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020)

    Google Scholar 

  28. Dai, H., Lan, D., Wang, Y., Wang, Z.: A modified CFAR algorithm based on object proposals for ship target detection in SAR images. IEEE Geosci. Remote. Sens. Lett. 13(12), 1925–1929 (2016)

    Article  Google Scholar 

  29. Wang, C., Bi, F., Chen, L., Chen, J.: A novel threshold template algorithm for ship detection in high-resolution SAR images. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 100–103 (2016)

    Google Scholar 

  30. Li, Y., Liu, W., Qi, R.: Multilevel pyramid feature extraction and task decoupling network for SAR ship detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 17, 3560–3570 (2024)

    Article  Google Scholar 

  31. Sun, Z., Dai, M., Xiangguang Leng, Yu., Lei, B.X., Ji, K., Kuang, G.: An anchor-free detection method for ship targets in high-resolution SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14, 7799–7816 (2021)

    Article  Google Scholar 

  32. Chai, B., Chen, L., Shi, H., He, C.: Marine ship detection method for SAR image based on improved faster RCNN. In: 2021 SAR in Big Data Era (BIGSARDATA), pp. 1–4 (2021)

    Google Scholar 

  33. Chen, S., Zhan, R., Wang, W., Zhang, J.: Learning slimming SAR ship object detector through network pruning and knowledge distillation. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14, 1267–1282 (2021)

    Article  Google Scholar 

  34. Li, Q., Xiao, D., Shi, F.: A decoupled head and coordinate attention detection method for ship targets in SAR images. IEEE Access 10, 128562–128578 (2022)

    Article  Google Scholar 

  35. Zhao, X., Song, Y., Shi, S., Li, S.: Research on lightweight ship target detection algorithm based on improved yolov5. In: 2023 IEEE 11th International Conference on Information, Communication and Networks (ICICN), pp. 728–732 (2023)

    Google Scholar 

  36. Luo, Y., Li, M., Wen, G., Tan, Y., Shi, C.: Ship-yolo: a lightweight synthetic aperture radar ship detection model based on yolov8n algorithm. IEEE Access 12, 37030–37041 (2024)

    Article  Google Scholar 

  37. Jiahui, Y., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: Unitbox: an advanced object detection network. In: ACM (2016)

    Google Scholar 

  38. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Loss, D.R.D.-I.: Faster and better learning for bounding box regression (2019)

    Google Scholar 

  39. Zhang, Y.-F., Zhang, Z., Jia, Z., Wang, L., Tan, T., Ren, W.: Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing (2022)

    Google Scholar 

  40. Chen, X., Lian, Q., Chen, X., Shang, J.: Surface crack detection method for coal rock based on improved yolov5. Appl. Sci. (2022)

    Google Scholar 

  41. Wei, S., Zeng, X., Qizhe, Q., Wang, M., Hao, S., Shi, J.: HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 8, 120234–120254 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huo, L., Li, H., Wang, W., Gao, X., Wei, Y., Chen, K. (2025). GSE-Ships: Ship Detection Using Optimized Lightweight Networks and Attention Mechanisms. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15040. Springer, Singapore. https://doi.org/10.1007/978-981-97-8792-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8792-0_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8791-3

  • Online ISBN: 978-981-97-8792-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics