iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-981-97-8499-8_8
MDNet: Morphology-Driven Weakly Supervised Polyp Detection | SpringerLink
Skip to main content

MDNet: Morphology-Driven Weakly Supervised Polyp Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15045))

Included in the following conference series:

  • 53 Accesses

Abstract

Polyps – indicators of lethal colorectal cancer and the focus of early screening and prevention, are missed to varying degrees in clinics due to morphological differences. Existing methods either need annotated bounding boxes, neglect the reality of unprepared polyp proposals, or lack complete predictions. Even worse, they only focus on the detection rate of polyps under pathological classification. To overcome these issues, we creatively propose the Morphology-Driven network (MDNet), which detects polyps with only image-level supervision. Specifically, by thinking of the generic feature between detection and segmentation, the cross-domain reference module (CRM) is devised to decrease the negative effect of the uncertain proposals. Based on spatial differences in polyp morphologies, the spatial category module (SCM) is designed, which enhances the ability to discriminate similar polyps of different morphology. In addition, class and region scores are integrated into the dual-threshold post-processing strategy (DPS) to improve detection accuracy. We carry out the experiments on three datasets (one internal and two public) and experimental results indicate that MDNet has better robustness and performance. All code is available at https://github.com/dxqllp/MDNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://polyp.grand-challenge.org/CVCClinicDB/.

  2. 2.

    https://datasets.simula.no/downloads/kvasir-seg.zip.

  3. 3.

    Fig S* represents the Fig in the supplementary material.

  4. 4.

    https://github.com/open-mmlab/mmdetection.

  5. 5.

    https://github.com/researchmm/WSOD2.

  6. 6.

    Table S* represents the Table in the supplementary material.

References

  1. Aditya, C., Anirban, S., Prantik, H., N, B.V.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: IEEE Winter Conference on Applications of Computer Vision, pp. 839–847 (2018)

    Google Scholar 

  2. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  3. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a survey. Comput. Vis. Med. 5, 117–150 (2014)

    Article  Google Scholar 

  4. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chen, S., Sun, P., Song, Y., Luo, P.: Diffusiondet: diffusion model for object detection. arXiv:2211.09788 (2022)

  6. Debesh, H., et al.: Kvasir-SEG: a segmented polyp dataset. In: MultiMedia Modeling, pp. 451–462 (2020)

    Google Scholar 

  7. Debesh, J., et al.: Real-time polyp detection, localization and segmentation in colonoscopy using deep learning. IEEE Access (99), 40496–40510 (2021)

    Google Scholar 

  8. Deng-Ping, F., et al.: Pranet: parallel reverse attention network for polyp segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 263–273 (2020)

    Google Scholar 

  9. Deselaers, A.: Ferrari: weakly supervised localization and learning with generic knowledge. Int. J. Comput. Vis. 100(3), 275–293 (2012)

    Article  MathSciNet  Google Scholar 

  10. Fang, Y., Zhu, D., Yao, J., Yuan, Y., Tong, K.Y.: ABC-Net: area-boundary constraint network with dynamical feature selection for colorectal polyp segmentation. IEEE Sens. J. 21(10), 11799–11809 (2021)

    Article  Google Scholar 

  11. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv:2107.08430 (2021)

  12. Haggar, F., Boushey, R.P.: Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg. (2009)

    Google Scholar 

  13. Hakan, B., Andrea, V.: Weakly supervised deep detection networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2846–2854 (2016)

    Google Scholar 

  14. Jia, X., Xing, X., Yuan, Y., Xing, L., Meng, M.: Wireless capsule endoscopy: a new tool for cancer screening in the colon with deep-learning-based polyp recognition. Proc. IEEE 108(1), 178–197 (2019)

    Article  Google Scholar 

  15. Jiang, W., et al.: Risk factors related to polyp miss rate of short-term repeated colonoscopy. Dig. Dis. Sci. 68(5), 2040–2049 (2023)

    Google Scholar 

  16. Jiang, Y., et al.: ECC-polypdet: enhanced centernet with contrastive learning for automatic polyp detection. arXiv:2401.04961 (2024)

  17. Jiang, Y., Zhang, Z., Zhang, R., Li, G., Cui, S., Li, Z.: YONA: you only need one adjacent reference-frame for accurate and fast video polyp detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2023)

    Google Scholar 

  18. Jiwoon, A., Suha, K.: Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4981–4990 (2018)

    Google Scholar 

  19. Kai, C., et al.: MMDetection: open MMLab detection toolbox and benchmark. arXiv:1906.07155 (2019)

  20. Karaman, A., et al.: Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CRC) polyp detection. Biomed. Signal Process. Control 71(12), 15603–15620 (2023)

    Google Scholar 

  21. Karaman, A., et al.: Robust real-time polyp detection system design based on YOLO algorithms by optimizing activation functions and hyper-parameters with artificial bee colony (ABC). Expert Syst. Appl. 221(12), 119741 (2023)

    Google Scholar 

  22. Kwon, J., Choi, K.: Weakly supervised attention map training for histological localization of colonoscopy images. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3725–3728 (2021)

    Google Scholar 

  23. Li, K., Wu, Z., Peng, K.C., Jan, E., Yun, F.: Guided attention inference network. IEEE Trans. Pattern Anal. Mach. Intell. 42(12), 2996–3010 (2019)

    Article  Google Scholar 

  24. Li, Y.: Analysis of missed diagnosis rate and related factors of colorectal polyps in colonoscopy. Gems Health 12, 260–261 (2020). July

    Google Scholar 

  25. Mo, X., Tao, K., Wang, Q., Wang, G.: An efficient approach for polyps detection in endoscopic videos based on faster R-CNN. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3929–3934 (2018)

    Google Scholar 

  26. Olga, R., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 1–42 (2014)

    Google Scholar 

  27. Reamaroon, N., Sjoding, M.W., Gryak, J., Athey, B.D., Najarian, K., Derksen, H.: Automated detection of acute respiratory distress syndrome from chest X-rays using directionality measure and deep learning features. Comput. Biol. Med. 134 (2021)

    Google Scholar 

  28. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv:1804.02767 (2018)

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  30. van de Sande Koen E.A., Uijlings, J.R.R., Gevers,T., Smeulders, A.W.M.: Segmentation as selective search for object recognition. In: International Conference on Computer Vision, pp. 1879–1886 (2011)

    Google Scholar 

  31. Selvaraju, R.R., Michael, C., Abhishek, D., Ramakrishna, V., Devi, P., Dhruv, B.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  32. Siegel, R.L., Wagle, N.S., Cercek, A., Smith, R.A., Jemal, A.: Colorectal cancer statistics, 2023. CA:A Cancer J. Clin. 73(3), 233–254 (2023)

    Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  34. Tang, P., Wang, X., Bai, X., Liu, W.: Multiple instance detection network with online instance classifier refinement. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3059–3067 (2017)

    Google Scholar 

  35. Yang, X., Song, E., Ma, G., Zhu, Y., Yu, D., Ding, B., Wang, X.: YOLO-OB: an improved anchor-free real-time multiscale colon polyp detector in colonoscopy. arXiv:arXiv:2312.08628 (2023)

  36. Zeng, Z., Liu, B., Fu, J., Chao, H., Zhang, L.: WSOD2: learning bottom-up and top-down objectness distillation for weakly-supervised object detection. In: IEEE International Conference on Computer Vision, pp. 8291–8299 (2019)

    Google Scholar 

  37. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2015)

    Google Scholar 

Download references

Acknowledgment

The work was supported by Hefei Municipal Natural Science Foundation (2022009) and the High-performance Computing Platform of Anhui University for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuquan Du .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3895 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Zhang, X., Gui, J., Du, X., Sha, W. (2025). MDNet: Morphology-Driven Weakly Supervised Polyp Detection. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15045. Springer, Singapore. https://doi.org/10.1007/978-981-97-8499-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8499-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8498-1

  • Online ISBN: 978-981-97-8499-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics