iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-981-97-5678-0_8
FOKHic: A Framework of $${\varvec{k}}$$ -mer Based Hierarchical Classification | SpringerLink
Skip to main content

FOKHic: A Framework of \({\varvec{k}}\)-mer Based Hierarchical Classification

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14880))

Included in the following conference series:

  • 462 Accesses

Abstract

The significance of viruses in various ecosystems necessitates a comprehensive examination of viral genomes across diverse datasets, underscoring the growing importance of automated and reliable identification of viruses in metagenomic data. However, the complex composition and large data volumes pose a crucial challenge to taxonomic analysis, particularly in deep hierarchies. In this paper, we propose a new hierarchical classification model, FOKHic, which allows hierarchical classification of viruses from kingdom to family. By combining \(k\)-mer frequency-based coding, principal component analysis, and attention fusion, FOKHic is capable of accomplishing rapid classification of metagenomic viral sequences. Benchmarked on the ICTV virus database, FOKHic exhibits overwhelming performance in terms of accuracy, recall, precision, and F1-score compared to currently popular virus-oriented tools. FOKHic is available at https://github.com/xiaozhangzhang123/FOKHic.

This work is supported by the National Natural Science Foundation of China under No. 61672325, No.61472222, and No.61732009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guo, J., Bolduc, B., Zayed, A., Varsani, A., Dominguez-Huerta, G., Delmont, T.O.: Virsorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA Riruses. Microbiome 9(1), 1–13 (2021)

    Article  Google Scholar 

  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

    Article  Google Scholar 

  3. Buchfink, B., Xie, C., Huson, D.H.: Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12(1), 59–60 (2015)

    Article  Google Scholar 

  4. Langmead, B.: Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics 32(supp.), 11.7 (2010)

    Google Scholar 

  5. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14), 1754–1760 (2009)

    Article  Google Scholar 

  6. Roux, S., et al.: Metavir: a web server dedicated to Virome analysis. Bioinformatics 27(21), 3074–3075 (2011)

    Article  Google Scholar 

  7. Zhao, G., et al.: VirusSeeker: a computational pipeline for virus discovery and Virome composition analysis. Virology 503, 21–30 (2017)

    Article  Google Scholar 

  8. Wommack, K.E., et al.: Virome: a standard operating procedure for analysis of viral metagenome sequences. Stand. Genomic Sci. 6(3), 421–433 (2012)

    Article  Google Scholar 

  9. Kim, D., Song, L., Breitwieser, F.P., Salzberg, S.L.: Centrifuge: rapid and sensitive classification of Metagenomic sequences. Genome Res. 26(12), 1721–1729 (2016)

    Article  Google Scholar 

  10. Ahlgren, N.A., Jie, R., Young, L.Y., Fuhrman, J.A., Sun, F.: Alignment-Free d2 oligonucleotide frequency dissimilarity measure improves prediction of hosts from Metagenomically-derived viral sequences. Nucleic Acids Res. 45(1), 39–53 (2017)

    Article  Google Scholar 

  11. Wood, D.E., Lu, J., Langmead, B.: Improved Metagenomic analysis with Kraken2. Genome Biol. 20, 257 (2019)

    Article  Google Scholar 

  12. Mistry, J., Finn, R.D., Eddy, S.R., Bateman, A., Punta M.: Challenges in homology search: HMMER3 and convergent evolution of coiledcoil regions. Nucleic Acids Res. 41(12), e121 (2013)

    Google Scholar 

  13. Rosen, G., Garbarine, E., Caseiro, D., Polikar, R., Sokhansanj, B.: Metagenome fragment classification using k-mer frequency profiles. Adv. Bioinform. 2008, 1–12 (2008)

    Article  Google Scholar 

  14. Ren, J., Ahlgren, N.A., Lu, Y., Fuhrman, J.A., Sun, F.: VirFinder: a novel k-mer based tool for identifying viral sequences from assembled Metagenomic data. BioMed Central. 5(1), 1–20 (2017)

    Google Scholar 

  15. Ren, J., et al.: Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 64–77 (2020)

    Article  Google Scholar 

  16. Zhang, Y., Li, C., Feng, H., Zhu, D.: DLmeta: a deep learning method for metagenomic identification. In: BIBM2022, 303–308 (2022)

    Google Scholar 

  17. Tampuu, A., Bzhalava, Z., Dillner, J., Vicente, R.: ViraMiner: deep learning on raw DNA sequences for identifying viral genomes in human samples. PLoS ONE 14(9), 1–17 (2019)

    Article  Google Scholar 

  18. Fiannaca, A., et al.: Deep learning models for bacteria taxonomic classification of metagenomic data. BMC Bioinformatics 19, 61–76 (2018)

    Article  Google Scholar 

  19. Shang, J., Sun, Y.: CHEER: hierarchical taxonomic classification for viral metagenomic data via deep learning. Methods 189, 95–103 (2021)

    Article  Google Scholar 

  20. Delcher, A.L., Bratke, K.A., Powers, E.C., Salzberg, S.L.: Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6), 673–679 (2007)

    Article  Google Scholar 

  21. Brady, A., Salzberg, S.L.: Phymm and phymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat. Methods 6(9), 673–676 (2009)

    Article  Google Scholar 

  22. Patil, K.R., Roune, L., McHardy A.C.: The phylopythias web server for taxonomic assignment of metagenome sequences. PloS One 7(6), e38581 (2012)

    Google Scholar 

  23. Ounit, R., Wanamaker, S., Close, T.J., Lonardi, S.: CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics 16(1), 1–13 (2015)

    Article  Google Scholar 

  24. Ainsworth, D., Sternberg, M.J., Raczy, C., Butcher, S.A.: k-SLAM: accurate and ultra-fast taxonomic classification and gene identification for large metagenomic data sets. Nucleic Acids Res. 45(4), 1649–1656 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haodi Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhou, Y., Feng, H., Zhu, D. (2024). FOKHic: A Framework of \({\varvec{k}}\)-mer Based Hierarchical Classification. In: Huang, DS., Si, Z., Chen, W. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science(), vol 14880. Springer, Singapore. https://doi.org/10.1007/978-981-97-5678-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5678-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5677-3

  • Online ISBN: 978-981-97-5678-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics