iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-981-97-2303-4_15
An Empirical Study of Attention Networks for Semantic Segmentation | SpringerLink
Skip to main content

An Empirical Study of Attention Networks for Semantic Segmentation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Semantic segmentation is a vital problem in computer vision. Recently, a common solution to semantic segmentation is the end-to-end convolution neural network, which is much more accurate than traditional methods. Recently, the decoders based on attention achieve state-of-the-art (SOTA) performance on various datasets. But these networks always are compared with the mIoU of previous SOTA networks to prove their superiority and ignore their characteristics without considering the computation complexity and precision in various categories, which is essential for engineering applications. Besides, the methods to analyze the FLOPs and memory are not consistent between different networks, which makes the comparison hard to be utilized. What’s more, various methods utilize attention in semantic segmentation, but the conclusion of these methods is lacking. This paper first conducts experiments to analyze their computation complexity and compare their performance. Then it summarizes suitable scenes for these networks and concludes key points that should be concerned when constructing an attention network. Last it points out some future directions of the attention network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, W., et al.: Tensor low-rank reconstruction for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 202, vol. 12362, pp. 52–69. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-58520-4_4

    Chapter  Google Scholar 

  2. Cheng, B., Schwing, A., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. Adv. Neural. Inf. Process. Syst. 34, 17864–17875 (2021)

    Google Scholar 

  3. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  4. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  5. Guo, M.H., et al.: Attention mechanisms in computer vision: a survey. In: Computational Visual Media, pp. 1–38 (2022)

    Google Scholar 

  6. Hayhoe, M., Ballard, D.: Eye movements in natural behavior. Trends Cogn. Sci. 9(4), 188–194 (2005)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hu, X., Yang, K., Fei, L., Wang, K.: ACNET: attention based network to exploit complementary features for rgbd semantic segmentation. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1440–1444. IEEE (2019)

    Google Scholar 

  9. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 603–612 (2019)

    Google Scholar 

  10. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  11. Li, L., Zhou, T., Wang, W., Li, J., Yang, Y.: Deep hierarchical semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1246–1257 (2022)

    Google Scholar 

  12. Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., Liu, H.: Expectation-maximization attention networks for semantic segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9167–9176 (2019)

    Google Scholar 

  13. Li, X., Zhao, H., Han, L., Tong, Y., Tan, S., Yang, K.: Gated fully fusion for semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11418–11425 (2020)

    Google Scholar 

  14. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440 (2016)

  15. Ravanbakhsh, M., et al.: Human-machine collaboration for medical image segmentation. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1040–1044. IEEE (2020)

    Google Scholar 

  16. Song, Q., Li, J., Li, C., Guo, H., Huang, R.: Fully attentional network for semantic segmentation. arXiv preprint arXiv:2112.04108 (2021)

  17. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7262–7272 (2021)

    Google Scholar 

  18. Sun, A., Zhang, X., Ling, T., Wang, J., Cheng, N., Xiao, J.: Pre-avatar: an automatic presentation generation framework leveraging talking avatar. In: 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1002–1006 (2022). https://doi.org/10.1109/ICTAI56018.2022.00153

  19. Valenzuela, A., Arellano, C., Tapia, J.: An efficient dense network for semantic segmentation of eyes images captured with virtual reality lens. In: 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 28–34. IEEE (2019)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 5998–6008 (2017)

    Google Scholar 

  21. Wang, P., et al.: Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1451–1460. IEEE (2018)

    Google Scholar 

  22. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)

    Google Scholar 

  23. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057. PMLR (2015)

    Google Scholar 

  24. Yin, M., et al.: Disentangled non-local neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 191–207. Springer, Heidelberg (2020)

    Google Scholar 

  25. Yuan, J., Deng, Z., Wang, S., Luo, Z.: Multi receptive field network for semantic segmentation. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1883–1892. IEEE (2020)

    Google Scholar 

  26. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    Chapter  Google Scholar 

  27. Zhao, H., et al.: Psanet: point-wise spatial attention network for scene parsing. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 267–283 (2018)

    Google Scholar 

  28. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)

    Google Scholar 

  29. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, H. et al. (2024). An Empirical Study of Attention Networks for Semantic Segmentation. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14331. Springer, Singapore. https://doi.org/10.1007/978-981-97-2303-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2303-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2302-7

  • Online ISBN: 978-981-97-2303-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics