iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-981-97-2262-4_1
Re-thinking Human Activity Recognition with Hierarchy-Aware Label Relationship Modeling | SpringerLink
Skip to main content

Re-thinking Human Activity Recognition with Hierarchy-Aware Label Relationship Modeling

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

Human Activity Recognition (HAR) has been studied for decades, from data collection, learning models, to post-processing and result interpretations. However, the inherent hierarchy in the activities remains relatively under-explored, despite its significant impact on model performance and interpretation. In this paper, we propose H-HAR, by rethinking the HAR tasks from a fresh perspective by delving into their intricate global label relationships. Rather than building multiple classifiers separately for multi-layered activities, we explore the efficacy of a flat model enhanced with graph-based label relationship modeling. Being hierarchy-aware, the graph-based label modeling enhances the fundamental HAR model, by incorporating intricate label relationships into the model. We validate the proposal with a multi-label classifier on complex human activity data. The results highlight the advantages of the proposal, which can be vertically integrated into advanced HAR models to further enhance their performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banerjee, S., Akkaya, C., Perez-Sorrosal, F., Tsioutsiouliklis, K.: Hierarchical transfer learning for multi-label text classification. In: ACL, pp. 6295–6300 (2019)

    Google Scholar 

  2. Banos, O., Garcia, R., Saez, A.: MHEALTH Dataset. UCI Machine Learning Repository (2014). https://doi.org/10.24432/C5TW22

  3. Chen, H., Ma, Q., Lin, Z., Yan, J.: Hierarchy-aware label semantics matching network for hierarchical text classification. In: ACL, pp. 4370–4379 (2021)

    Google Scholar 

  4. Debache, I., Jeantet, L., Chevallier, D., Bergouignan, A., Sueur, C.: A lean and performant hierarchical model for human activity recognition using body-mounted sensors. Sensors 20(11), 3090 (2020)

    Article  Google Scholar 

  5. Dumais, S., Chen, H.: Hierarchical classification of web content. In: SIGIR, pp. 256–263 (2000)

    Google Scholar 

  6. Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., Krishnan, D.: Supervised contrastive learning. NeurIPS 33, 18661–18673 (2020)

    Google Scholar 

  7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  8. Leutheuser, H., Schuldhaus, D., Eskofier, B.M.: Hierarchical, multi-sensor based classification of daily life activities: comparison with state-of-the-art algorithms using a benchmark dataset. PLoS ONE 8(10), e75196 (2013)

    Article  Google Scholar 

  9. Reyes-Ortiz, J.L., Oneto, L., Samà, A., Parra, X., Anguita, D.: Transition-aware human activity recognition using smartphones. Neurocomputing 171, 754–767 (2016)

    Article  Google Scholar 

  10. Shimura, K., Li, J., Fukumoto, F.: HFT-CNN: learning hierarchical category structure for multi-label short text categorization. In: ACL, pp. 811–816 (2018)

    Google Scholar 

  11. Thu, N.T.H., Han, D.S.: HiHAR: a hierarchical hybrid deep learning architecture for wearable sensor-based human activity recognition. IEEE Access 9, 145271–145281 (2021)

    Article  Google Scholar 

  12. Tonioni, A., Di Stefano, L.: Domain invariant hierarchical embedding for grocery products recognition. CVIU 182, 81–92 (2019)

    Google Scholar 

  13. Wang, Z., Wang, P., Huang, L., Sun, X., Wang, H.: Incorporating hierarchy into text encoder: a contrastive learning approach for hierarchical text classification. In: ACL, pp. 7109–7119 (2022)

    Google Scholar 

  14. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-temporal graph modeling. In: IJCAI, pp. 1907–1913 (2019)

    Google Scholar 

  15. Zhang, S., McCullagh, P., Nugent, C., Zheng, H.: Activity monitoring using a smart phone’s accelerometer with hierarchical classification. In: 2010 Sixth International Conference on Intelligent Environments, pp. 158–163. IEEE (2010)

    Google Scholar 

  16. Zhang, X., Zhou, F., Lin, Y., Zhang, S.: Embedding label structures for fine-grained feature representation. In: CVPR, pp. 1114–1123 (2016)

    Google Scholar 

  17. Zheng, Y.: Human activity recognition based on the hierarchical feature selection and classification framework. J. Elect. Comput. Eng. 2015, 34–34 (2015)

    Google Scholar 

  18. Zhou, J., et al.: Hierarchy-aware global model for hierarchical text classification. In: ACL, pp. 1106–1117 (2020)

    Google Scholar 

  19. Zuo, J., Arvanitakis, G., Hacid, H.: On handling catastrophic forgetting for incremental learning of human physical activity on the edge. In: EDBT (2023)

    Google Scholar 

  20. Zuo, J., Arvanitakis, G., Ndhlovu, M., Hacid, H.: Magneto: edge AI for human activity recognition - privacy and personalization. In: EDBT (2024)

    Google Scholar 

  21. Zuo, J., Zeitouni, K., Taher, Y.: Exploring interpretable features for large time series with se4tec. In: EDBT (2019)

    Google Scholar 

  22. Zuo, J., Zeitouni, K., Taher, Y.: SMATE: semi-supervised spatio-temporal representation learning on multivariate time series. In: ICDM, pp. 1565–1570 (2021)

    Google Scholar 

  23. Zuo, J., Zeitouni, K., Taher, Y., Garcia-Rodriguez, S.: Graph convolutional networks for traffic forecasting with missing values. DMKD 37(2), 913–947 (2023)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei Zuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuo, J., Hacid, H. (2024). Re-thinking Human Activity Recognition with Hierarchy-Aware Label Relationship Modeling. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14649. Springer, Singapore. https://doi.org/10.1007/978-981-97-2262-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2262-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2264-8

  • Online ISBN: 978-981-97-2262-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics