iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-981-97-1417-9_17
How Challenging is a Challenge for SLAM? An Answer from Quantitative Visual Evaluation | SpringerLink
Skip to main content

How Challenging is a Challenge for SLAM? An Answer from Quantitative Visual Evaluation

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14374))

Included in the following conference series:

  • 192 Accesses

Abstract

SLAM (Simultaneously Localization and Mapping) is the fundamental technology for the application of unmanned intelligent systems, such as underwater exploration with fish robots. But various visual challenges often occur in practical environments, severely threaten the system robustness. Currently, few research explicitly focus on visual challenges for SLAM and analyze them quantitatively, resulting in works with less comprehensiveness and generalization. Many are basically not intelligent enough in the changing real world and sometimes even infeasible for practical deployment due to the lack of accurate visual cognition in the ambient environment, as many animals do. Inspired by visual perception pathways in brains, we try to solve the problem from the view of visual cognition and propose a fully computational reliable evaluation method for general challenges to push the frontier of visual SLAM. It systematically decomposes various challenges into three relevant aspects and evaluates the perception quality with corresponding scores. Extensive experiments on different datasets demonstrate the feasibility and effectiveness of our method by a strong correlation with SLAM performance. Moreover, we automatically obtain detailed insights about challenges from quantitative evaluation, which is also important for targeted solutions. To our best knowledge, no similar works exist at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson Correlation Coefficient, pp. 1–4. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0_5

  2. Brunner, C., Peynot, T.: Visual metrics for the evaluation of sensor data quality in outdoor perception. In: Proceedings of the 10th Performance Metrics for Intelligent Systems Workshop, pp. 1–8. PerMIS ’10, Association for Computing Machinery, New York, NY, USA (2010)

    Google Scholar 

  3. Brunner, C., Peynot, T.: Perception quality evaluation with visual and infrared cameras in challenging environmental conditions. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 79, pp. 711–725. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-28572-1_49

  4. Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W., Siegwart, R.: The euroc micro aerial vehicle datasets. Int. J. Robot. Res. 35(10), 1157–1163 (2016)

    Article  Google Scholar 

  5. Campos, C., Elvira, R., Rodriguez, J.J.G., Montiel, J.M., Tardos, J.D.: ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap slam. IEEE Trans. Robot. 37(6), 1874–1890 (2021)

    Google Scholar 

  6. Carrillo, H., Reid, I., Castellanos, J.A.: On the comparison of uncertainty criteria for active slam. In: IEEE International Conference on Robotics and Automation, pp. 2080–2087 (2012)

    Google Scholar 

  7. Cepeda-Negrete, J., Sanchez-Yanez, R.E.: Gray-world assumption on perceptual color spaces. In: Klette, R., Rivera, M., Satoh, S. (eds.) PSIVT 2013. LNCS, vol. 8333, pp. 493–504. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53842-1_42

    Chapter  Google Scholar 

  8. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)

    Article  Google Scholar 

  9. Ferrera, M., Creuze, V., Moras, J., Trouvé-Peloux, P.: AQUALOC: an underwater dataset for visual-inertial-pressure localization. Int. J. Robot. Res. 38(14), 1549–1559 (2019)

    Article  Google Scholar 

  10. Gadkari, D.: Image quality analysis using GLCM (2004)

    Google Scholar 

  11. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  12. Kim, P., Coltin, B., Alexandrov, O., Kim, H.J.: Robust visual localization in changing lighting conditions. In: IEEE International Conference on Robotics and Automation, pp. 5447–5452 (2017)

    Google Scholar 

  13. Ma, K., Liu, W., Zhang, K., Duanmu, Z., Wang, Z., Zuo, W.: End-to-end blind image quality assessment using deep neural networks. IEEE Trans. Image Process. 27(3), 1202–1213 (2018)

    Article  MathSciNet  Google Scholar 

  14. Ma, P., et al.: Multiscale superpixelwise prophet model for noise-robust feature extraction in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 61, 1–12 (2023)

    Google Scholar 

  15. Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  Google Scholar 

  16. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  17. Santamaria-Navarro, A., Thakker, R., Fan, D.D., Morrell, B., Agha-mohammadi, A.A.: Towards resilient autonomous navigation of drones. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds.) Robotics Research. ISRR 2019. LNCS. Springer Proceedings in Advanced Robotics, vol. 20, pp. 922–937. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95459-8_57

  18. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580 (2012)

    Google Scholar 

  19. Teed, Z., Deng, J.: Droid-slam: deep visual slam for monocular, stereo, and rgb-d cameras. Adv. Neural Inf. Process. Syst. 34, 16558–16569 (2021)

    Google Scholar 

  20. Tranzatto, M., et al.: Cerberus: autonomous legged and aerial robotic exploration in the tunnel and urban circuits of the darpa subterranean challenge. arXiv preprint arXiv:2201.07067 (2022)

  21. Xiang, T., Yang, Y., Guo, S.: Blind night-time image quality assessment: subjective and objective approaches. IEEE Trans. Multimed. 22(5), 1259–1272 (2020)

    Article  Google Scholar 

  22. Xiong, J., Wang, J., Heidrich, W., Nayar, S.: Seeing in extra darkness using a deep-red flash. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9995–10004 (2021)

    Google Scholar 

  23. Yang, N., Zhong, Q., Li, K., Cong, R., Zhao, Y., Kwong, S.: A reference-free underwater image quality assessment metric in frequency domain. Signal Process. Image Commun. 94, 116218 (2021)

    Article  Google Scholar 

  24. Zhang, J., Singh, S.: Enabling aggressive motion estimation at low-drift and accurate mapping in real-time. In: IEEE International Conference on Robotics and Automation, pp. 5051–5058 (2017)

    Google Scholar 

  25. Zhang, Z., Scaramuzza, D.: A tutorial on quantitative trajectory evaluation for visual(-inertial) odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7244–7251 (2018)

    Google Scholar 

  26. Zhao, X.: The genshin impact dataset (GID) for slam (2023). https://github.com/zhaoxuhui/Genshin-Impact-Dataset

Download references

Acknowledgements

This research is partially supported by the National Natural Science Foundation of China Major Program (Grant No. 42192580, 42192583), Hubei Province Natural Science Foundation (Grant No. 2021CFA088 and 2020-CFA003), the Science and Technology Major Project (Grant No. 2021AAA010), and Wuhan University - Huawei Geoinformatics Innovation Laboratory. Numerical calculations are supported by Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Gao, Z., Li, H., Li, C., Chen, J., Yi, H. (2024). How Challenging is a Challenge for SLAM? An Answer from Quantitative Visual Evaluation. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2023. Lecture Notes in Computer Science(), vol 14374. Springer, Singapore. https://doi.org/10.1007/978-981-97-1417-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1417-9_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1416-2

  • Online ISBN: 978-981-97-1417-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics