Abstract
Fog computing, as a novel computing paradigm, aims at alleviating data loads of cloud computing and brings computing resources closer to end users. This is achieved through fog nodes such as access points, sensors, and fog servers. According to the fog computing location awareness capabilities, a large quantity of devices exists in the physical environment with a short cover range. This leads to location privacy exposure by the connection triggered. Adversaries can pry into more private data through the commodiously accessible location information. Although the existing privacy-preserving schemes can address some issues such as differential privacy, it cannot meet various privacy expectations in practice for fog computing variants. Motivated by this, we propose a location-aware dynamic dual \(\epsilon \)-differential privacy preservation scheme to provide the ultimate protection. We start by establishing the first scheme by clustering fog nodes with SDN-enabled fog computing. In addition, we customize \(\epsilon \)-differential privacy preservation scheme to tailor-made for the variant fog computing services. Furthermore, we employ a modified Laplacian mechanism to generate noise, with which we find the optimal trade-off. Extensive experimental results confirm the significance of the proposed model in terms of privacy protection level and data utility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badsha, S., et al.: Privacy preserving location-aware personalized web service recommendations. IEEE Trans. Serv. Comput. 1 (2018). https://doi.org/10.1109/TSC.2018.2839587
Baktir, A.C., Ozgovde, A., Ersoy, C.: How can edge computing benefit from software-defined networking: a survey, use cases, and future directions. IEEE Commun. Surv. Tutor. 19(4), 2359–2391 (2017). https://doi.org/10.1109/COMST.2017.2717482
Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4_7
Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC 2012, New York, NY, USA, pp. 13–16. ACM (2012). https://doi.org/10.1145/2342509.2342513. http://doi.acm.org/10.1145/2342509.2342513
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007). https://doi.org/10.1126/science.1136800. http://science.sciencemag.org/content/315/5814/972
Gao, L., Luan, T.H., Yu, S., Zhou, W., Liu, B.: FogRoute: DTN-based data dissemination model in fog computing. IEEE Internet of Things J. 4(1), 225–235 (2017)
Gu, B., Wang, X., Qu, Y., Jin, J., Xiang, Y., Gao, L.: Context-aware privacy preservation in a hierarchical fog computing system. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)
Gu, B.S., Gao, L., Wang, X., Qu, Y., Jin, J., Yu, S.: Privacy on the edge: Customizable privacy-preserving context sharing in hierarchical edge computing. IEEE Trans. Netw. Sci. Eng. (2019)
Kadhim, A.J., Hosseini Seno, S.A.: Maximizing the utilization of fog computing in internet of vehicle using SDN. IEEE Commun. Lett. 23(1), 140–143 (2019)
Kang, J., Yu, R., Huang, X., Zhang, Y.: Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Trans. Intell. Transp. Syst. 19(8), 2627–2637 (2018)
Li, C., Qin, Z., Novak, E., Li, Q.: Securing SDN infrastructure of IoT? Fog networks from MITM attacks. IEEE Internet of Things J. 4(5), 1156–1164 (2017)
Luan, T.H., Gao, L., Li, Z., Xiang, Y., Sun, L.: Fog computing: focusing on mobile users at the edge. CoRR abs/1502.01815 (2015). http://arxiv.org/abs/1502.01815
Lyu, L., Nandakumar, K., Rubinstein, B., Jin, J., Bedo, J., Palaniswami, M.: PPFA: privacy preserving fog-enabled aggregation in smart grid. IEEE Trans. Ind. Inf. 14(8), 3733–3744 (2018). https://doi.org/10.1109/TII.2018.2803782
Ma, L., Liu, X., Pei, Q., Xiang, Y.: Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing. IEEE Trans. Serv. Comput. 1 (2018). https://doi.org/10.1109/TSC.2018.2825986
Qu, Y., Yu, S., Gao, L., Zhou, W., Peng, S.: A hybrid privacy protection scheme in cyber-physical social networks. IEEE Trans. Comput. Soc. Syst. 5(3), 773–784 (2018). https://doi.org/10.1109/TCSS.2018.2861775
Qu, Y., et al.: Decentralized privacy using blockchain-enabled federated learning in fog computing. IEEE Internet of Things J. (2020)
Qu, Y., Yu, S., Zhang, J., Binh, H.T.T., Gao, L., Zhou, W.: GAN-DP: generative adversarial net driven differentially privacy-preserving big data publishing. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)
Qu, Y., Yu, S., Zhou, W., Peng, S., Wang, G., Xiao, K.: Privacy of things: emerging challenges and opportunities in wireless internet of things. IEEE Wireless Commun. 25(6), 91–97 (2018). https://doi.org/10.1109/MWC.2017.1800112
Qu, Y., Yu, S., Zhou, W., Tian, Y.: GAN-driven personalized spatial-temporal private data sharing in cyber-physical social systems. IEEE Trans. Netw. Sci. Eng. (2020)
Stojmenovic, I., Wen, S.: The fog computing paradigm: scenarios and security issues. In: 2014 Federated Conference on Computer Science and Information Systems, pp. 1–8, September 2014. https://doi.org/10.15439/2014F503
Wang, Q., Chen, D., Zhang, N., Ding, Z., Qin, Z.: PCP: a privacy-preserving content-based publish? Subscribe scheme with differential privacy in fog computing. IEEE Access 5, 17962–17974 (2017). https://doi.org/10.1109/ACCESS.2017.2748956
Wang, T., Zhou, J., Chen, X., Wang, G., Liu, A., Liu, Y.: A three-layer privacy preserving cloud storage scheme based on computational intelligence in fog computing. IEEE Trans. Emerg. Topics Comput. Intell. 2(1), 3–12 (2018). https://doi.org/10.1109/TETCI.2017.2764109
Wang, W., Zhang, Q.: Privacy preservation for context sensing on smartphone. IEEE/ACM Trans. Netw. 24(6), 3235–3247 (2016). https://doi.org/10.1109/TNET.2015.2512301
Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: platform and applications. In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 73–78, November 2015. https://doi.org/10.1109/HotWeb.2015.22
Qu, Y., Zhang, J., Li, R., Zhang, X., Zhai, X., Yu , S.: Generative adversarial networks enhanced location privacy in 5G networks. Sci. China Inf. Sci. (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Gu, B., Wang, X., Qu, Y., Jin, J., Xiang, Y., Gao, L. (2020). Location-Aware Privacy Preserving Scheme in SDN-Enabled Fog Computing. In: Yu, S., Mueller, P., Qian, J. (eds) Security and Privacy in Digital Economy. SPDE 2020. Communications in Computer and Information Science, vol 1268. Springer, Singapore. https://doi.org/10.1007/978-981-15-9129-7_13
Download citation
DOI: https://doi.org/10.1007/978-981-15-9129-7_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-9128-0
Online ISBN: 978-981-15-9129-7
eBook Packages: Computer ScienceComputer Science (R0)