iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-981-15-9129-7_13
Location-Aware Privacy Preserving Scheme in SDN-Enabled Fog Computing | SpringerLink
Skip to main content

Location-Aware Privacy Preserving Scheme in SDN-Enabled Fog Computing

  • Conference paper
  • First Online:
Security and Privacy in Digital Economy (SPDE 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1268))

Included in the following conference series:

Abstract

Fog computing, as a novel computing paradigm, aims at alleviating data loads of cloud computing and brings computing resources closer to end users. This is achieved through fog nodes such as access points, sensors, and fog servers. According to the fog computing location awareness capabilities, a large quantity of devices exists in the physical environment with a short cover range. This leads to location privacy exposure by the connection triggered. Adversaries can pry into more private data through the commodiously accessible location information. Although the existing privacy-preserving schemes can address some issues such as differential privacy, it cannot meet various privacy expectations in practice for fog computing variants. Motivated by this, we propose a location-aware dynamic dual \(\epsilon \)-differential privacy preservation scheme to provide the ultimate protection. We start by establishing the first scheme by clustering fog nodes with SDN-enabled fog computing. In addition, we customize \(\epsilon \)-differential privacy preservation scheme to tailor-made for the variant fog computing services. Furthermore, we employ a modified Laplacian mechanism to generate noise, with which we find the optimal trade-off. Extensive experimental results confirm the significance of the proposed model in terms of privacy protection level and data utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badsha, S., et al.: Privacy preserving location-aware personalized web service recommendations. IEEE Trans. Serv. Comput. 1 (2018). https://doi.org/10.1109/TSC.2018.2839587

  2. Baktir, A.C., Ozgovde, A., Ersoy, C.: How can edge computing benefit from software-defined networking: a survey, use cases, and future directions. IEEE Commun. Surv. Tutor. 19(4), 2359–2391 (2017). https://doi.org/10.1109/COMST.2017.2717482

    Article  Google Scholar 

  3. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4_7

    Chapter  Google Scholar 

  4. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC 2012, New York, NY, USA, pp. 13–16. ACM (2012). https://doi.org/10.1145/2342509.2342513. http://doi.acm.org/10.1145/2342509.2342513

  5. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007). https://doi.org/10.1126/science.1136800. http://science.sciencemag.org/content/315/5814/972

  6. Gao, L., Luan, T.H., Yu, S., Zhou, W., Liu, B.: FogRoute: DTN-based data dissemination model in fog computing. IEEE Internet of Things J. 4(1), 225–235 (2017)

    Google Scholar 

  7. Gu, B., Wang, X., Qu, Y., Jin, J., Xiang, Y., Gao, L.: Context-aware privacy preservation in a hierarchical fog computing system. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)

    Google Scholar 

  8. Gu, B.S., Gao, L., Wang, X., Qu, Y., Jin, J., Yu, S.: Privacy on the edge: Customizable privacy-preserving context sharing in hierarchical edge computing. IEEE Trans. Netw. Sci. Eng. (2019)

    Google Scholar 

  9. Kadhim, A.J., Hosseini Seno, S.A.: Maximizing the utilization of fog computing in internet of vehicle using SDN. IEEE Commun. Lett. 23(1), 140–143 (2019)

    Article  Google Scholar 

  10. Kang, J., Yu, R., Huang, X., Zhang, Y.: Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles. IEEE Trans. Intell. Transp. Syst. 19(8), 2627–2637 (2018)

    Article  Google Scholar 

  11. Li, C., Qin, Z., Novak, E., Li, Q.: Securing SDN infrastructure of IoT? Fog networks from MITM attacks. IEEE Internet of Things J. 4(5), 1156–1164 (2017)

    Article  Google Scholar 

  12. Luan, T.H., Gao, L., Li, Z., Xiang, Y., Sun, L.: Fog computing: focusing on mobile users at the edge. CoRR abs/1502.01815 (2015). http://arxiv.org/abs/1502.01815

  13. Lyu, L., Nandakumar, K., Rubinstein, B., Jin, J., Bedo, J., Palaniswami, M.: PPFA: privacy preserving fog-enabled aggregation in smart grid. IEEE Trans. Ind. Inf. 14(8), 3733–3744 (2018). https://doi.org/10.1109/TII.2018.2803782

    Article  Google Scholar 

  14. Ma, L., Liu, X., Pei, Q., Xiang, Y.: Privacy-preserving reputation management for edge computing enhanced mobile crowdsensing. IEEE Trans. Serv. Comput. 1 (2018). https://doi.org/10.1109/TSC.2018.2825986

  15. Qu, Y., Yu, S., Gao, L., Zhou, W., Peng, S.: A hybrid privacy protection scheme in cyber-physical social networks. IEEE Trans. Comput. Soc. Syst. 5(3), 773–784 (2018). https://doi.org/10.1109/TCSS.2018.2861775

    Article  Google Scholar 

  16. Qu, Y., et al.: Decentralized privacy using blockchain-enabled federated learning in fog computing. IEEE Internet of Things J. (2020)

    Google Scholar 

  17. Qu, Y., Yu, S., Zhang, J., Binh, H.T.T., Gao, L., Zhou, W.: GAN-DP: generative adversarial net driven differentially privacy-preserving big data publishing. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)

    Google Scholar 

  18. Qu, Y., Yu, S., Zhou, W., Peng, S., Wang, G., Xiao, K.: Privacy of things: emerging challenges and opportunities in wireless internet of things. IEEE Wireless Commun. 25(6), 91–97 (2018). https://doi.org/10.1109/MWC.2017.1800112

    Article  Google Scholar 

  19. Qu, Y., Yu, S., Zhou, W., Tian, Y.: GAN-driven personalized spatial-temporal private data sharing in cyber-physical social systems. IEEE Trans. Netw. Sci. Eng. (2020)

    Google Scholar 

  20. Stojmenovic, I., Wen, S.: The fog computing paradigm: scenarios and security issues. In: 2014 Federated Conference on Computer Science and Information Systems, pp. 1–8, September 2014. https://doi.org/10.15439/2014F503

  21. Wang, Q., Chen, D., Zhang, N., Ding, Z., Qin, Z.: PCP: a privacy-preserving content-based publish? Subscribe scheme with differential privacy in fog computing. IEEE Access 5, 17962–17974 (2017). https://doi.org/10.1109/ACCESS.2017.2748956

    Article  Google Scholar 

  22. Wang, T., Zhou, J., Chen, X., Wang, G., Liu, A., Liu, Y.: A three-layer privacy preserving cloud storage scheme based on computational intelligence in fog computing. IEEE Trans. Emerg. Topics Comput. Intell. 2(1), 3–12 (2018). https://doi.org/10.1109/TETCI.2017.2764109

  23. Wang, W., Zhang, Q.: Privacy preservation for context sensing on smartphone. IEEE/ACM Trans. Netw. 24(6), 3235–3247 (2016). https://doi.org/10.1109/TNET.2015.2512301

    Article  Google Scholar 

  24. Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: platform and applications. In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 73–78, November 2015. https://doi.org/10.1109/HotWeb.2015.22

  25. Qu, Y., Zhang, J., Li, R., Zhang, X., Zhai, X., Yu , S.: Generative adversarial networks enhanced location privacy in 5G networks. Sci. China Inf. Sci. (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longxiang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, B., Wang, X., Qu, Y., Jin, J., Xiang, Y., Gao, L. (2020). Location-Aware Privacy Preserving Scheme in SDN-Enabled Fog Computing. In: Yu, S., Mueller, P., Qian, J. (eds) Security and Privacy in Digital Economy. SPDE 2020. Communications in Computer and Information Science, vol 1268. Springer, Singapore. https://doi.org/10.1007/978-981-15-9129-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9129-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9128-0

  • Online ISBN: 978-981-15-9129-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics