iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-81-322-1771-8_62
Metaheuristic Approaches for Multiprocessor Scheduling | SpringerLink
Skip to main content

Metaheuristic Approaches for Multiprocessor Scheduling

  • Conference paper
  • First Online:
Proceedings of the Third International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 258))

Abstract

In the multiprocessor scheduling problem, a given list of tasks has to be scheduled on identical parallel processors. Each task in the list is defined by a release date, a due date and a processing time. The objective is to minimize the number of processors used while respecting the constraints imposed by release dates and due dates. This objective is clearly linked with minimizing the cost of hardware needed for implementing a specific application. In this paper, we have proposed two metaheuristic approaches for this problem. The first approach is based on artificial bee colony algorithm, whereas the latter approach is based on invasive weed optimization algorithm. On the standard benchmark instances for the problem, performances of our approaches are comparable to other state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012)

    Article  Google Scholar 

  2. Basak, A., Maity, D., Das, S.: A differential invasive weed optimization algorithm for improved global numerical optimization. Appl. Math. Comput. 219(12), 6645–6668 (2013)

    Article  MathSciNet  Google Scholar 

  3. Basturk, B., Karaboga, D.: An artificial bee colony (ABC) algorithm for numeric function optimization. In: Proceeding of the IEEE Swarm Intelligence Symposium, pp. 12–14. IEEE, Indianapolis (2006)

    Google Scholar 

  4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  5. Gajski, D.D., Dutt, N.D., Wu, A.C.-H., Lin, S.Y.-L.: High level synthesis: Introduction to chip and system design. Academic Publishers, Boston (1992)

    Google Scholar 

  6. Gao, W., Liu, S.: Improved artificial bee colony algorithm for global optimization. Inform. Process. Lett. 111(17), 871–882 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gao, W., Liu, S., Huang, L.: A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lee, J.-H., Hsu, Y.-C., Lin, Y.-L.: A new integer linear programming formulation for the scheduling problem in data path synthesis. In: Proceedings of the 1989 IEEE International Conference on Computer-Aided Design, pp. 20–23. IEEE Computer Society Press, New York (1989)

    Google Scholar 

  9. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Erciyes University, Turkey (2005)

    Google Scholar 

  10. Karaboga, D., Akay, B.: A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Appl. Soft Comput. 11, 3021–3031 (2011)

    Article  Google Scholar 

  11. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Lecture notes in Artificial Intelligence, vol. 4529, pp. 789–798. Springer, Berlin (2007)

    Google Scholar 

  12. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numeric function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  14. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artincial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. (2012). (In Press) doi: 10.1007/s10462-012-9328-0

  15. Kundu, D., Suresh, K., Ghosh, S., Das, S., Panigrahi, B.K., Das, S.: Multi-objective optimization with artificial weed colonies. Inf. Sci. 181(12), 2441–2454 (2011)

    Article  MathSciNet  Google Scholar 

  16. Mehrabian, A., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1(4), 355–366 (2006)

    Google Scholar 

  17. Pan, Q.K., Tasgetiren, M., Suganthan, P., Chua, T.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181, 2455–2468 (2011)

    Article  MathSciNet  Google Scholar 

  18. Rossi, A., Sevaux, M.: Mixed-integer linear programming formulation for high level synthesis. In: Proceedings of the Eleventh International Workshop on Project Management and Scheduling, pp. 222–226. Istanbul, Turkey (2008)

    Google Scholar 

  19. Roy, G.G., Chakraborty, P., Zhao, S.Z., Das, S., Suganthan, P.N.: Artificial foraging weeds for global numerical optimization over continuous spaces. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

    Google Scholar 

  20. Roy, S., Islam, S.M., Das, S., Ghosh, S.: Multimodal optimization by artificial weed colonies enhanced with localized group search optimizers. Appl. Soft Comput. 13(1), 27–46 (2013)

    Article  Google Scholar 

  21. Sevaux, M., Singh, A., Rossi, A.: Tabu search for multiprocessor scheduling: application to high level synthesis. Asia-Pac. J. Oper. Res. 28, 201–212 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sevaux, M., Sorensen, K.: A tabu search method for high level synthesis. In: Proceedings of the Francoro V/Roadef, pp. 395–396. France (2007)

    Google Scholar 

  23. Singh, A.: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Appl. Soft Comput. 9, 625–631 (2009)

    Article  Google Scholar 

  24. Singh, A., Sevaux, M., Rossi, A.: A hybrid grouping genetic algorithm for multiprocessor scheduling. In: Proceedings of the Second International Conference on Contemporary Computing, vol. 40, pp. 1–7. Springer, India (2009)

    Google Scholar 

  25. Sundar, S., Singh, A.: A swarm intelligence approach to the quadratic minimum spanning tree problem. Inf. Sci. 180, 3182–3191 (2010)

    Article  MathSciNet  Google Scholar 

  26. Sundar, S., Singh, A.: A swarm intelligence approach to the quadratic multiple knapsack problem. In: Lecture notes in Computer Science, vol. 6443, pp. 626–633. Springer, Berlin (2010)

    Google Scholar 

  27. Sundar, S., Singh, A.: A swarm intelligence approach to the early/tardy scheduling problem. Swarm Evol. Comput. 4, 25–32 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Munganda, L.K., Singh, A. (2014). Metaheuristic Approaches for Multiprocessor Scheduling. In: Pant, M., Deep, K., Nagar, A., Bansal, J. (eds) Proceedings of the Third International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 258. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1771-8_62

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1771-8_62

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1770-1

  • Online ISBN: 978-81-322-1771-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics