Abstract
Payment channel networks, and the Lightning Network in particular, seem to offer a solution to the lack of scalability and privacy offered by Bitcoin and other blockchain-based cryptocurrencies. Previous research has focused on the scalability, availability, and crypto-economics of the Lightning Network, but relatively little attention has been paid to exploring the level of privacy it achieves in practice. This paper presents a thorough analysis of the privacy offered by the Lightning Network, by presenting several attacks that exploit publicly available information about the network in order to learn information that is designed to be kept secret, such as how many coins a node has available or who the sender and recipient are in a payment routed through the network.
G. Kappos and H. Yousaf—Contributed equally. Full version of paper available at https://arxiv.org/abs/2003.12470.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
Bitrefill, for example, sells a channel with an incoming balance of 5000000 satoshis (the equivalent at the time of writing of 493.50 USD) for 8.48 USD.
- 6.
This would rather be a clique excluding a link between the sender and recipient, since otherwise they would presumably use their channel directly.
- 7.
- 8.
- 9.
References
The lightning conference: of channels, flows and icebergs talk by Christian Decker. https://www.youtube.com/watch?v=zk7hcJDQH-I
Lightning network specifications. https://github.com/lightningnetwork/lightning-rfc
Person behind 40% of LN’s capacity: “I have no doubt in Bitcoin and the Lightning Network”. https://www.theblockcrypto.com/post/41083/person-behind-40-of-lns-capacity-i-have-no-doubt-in-bitcoin-and-the-lightning-network
Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_4
Béres, F., Seres, I.A., Benczúr, A.A.: A cryptoeconomic traffic analysis of Bitcoins lightning network. arXiv:1911.09432 (2019)
Biryukov, A., Feher, D., Vitto, G.: Privacy aspects and subliminal channels in Zcash. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (2019)
Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in Bitcoin P2P network. In: Proceedings of ACM CCS (2014)
Bogatyy, I.: Linking 96% of Grin transactions. https://github.com/bogatyy/grin-linkability
Brânzei, S., Segal-Halevi, E., Zohar, A.: How to charge lightning. arXiv:1712.10222 (2017)
Conoscenti, M., Vetrò, A., De Martin, J.C., Spini, F.: The cloth simulator for HTLC payment networks with introductory lightning network performance results. Information 9, 223 (2018)
Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_8
Danezis, G., Goldberg, I.: Sphinx: a compact and provably secure mix format. In: 30th IEEE Symposium on Security and Privacy (2009)
Engelmann, F., Kopp, H., Kargl, F., Glaser, F., Weinhardt, C.: Towards an economic analysis of routing in payment channel networks. In: Proceedings of the 1st Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers (2017)
Gervais, A., Karame, G.O., Wüst, K.., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016)
Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Off the chain transactions. IACR Cryptology ePrint Archive, Sok (2019)
Herrera-Joancomartí, J., Navarro-Arribas, G., Ranchal-Pedrosa, A., Pérez-Solà, C., Garcia-Alfaro, J.: On the difficulty of hiding the balance of lightning network channels. In: Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security (CCS) (2019)
Hinteregger, A., Haslhofer, B.: An empirical analysis of Monero cross-chain traceability. In: Proceedings of the 23rd International Conference on Financial Cryptography and Data Security (FC) (Short paper) (2019)
Kalodner, H.A., Goldfeder, S., Chator, A., Möser, M., Narayanan, A.: BlockSci: design and applications of a blockchain analysis platform. arXiv:1709.02489 (2017)
Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of anonymity in Zcash. In: 27th \(USENIX\) Security Symposium 2018 (2018)
Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 439–453 (2017)
Khan, N., State, R.: Lightning network: a comparative review of transaction fees and data analysis. In: Prieto, J., Das, A.K., Ferretti, S., Pinto, A., Corchado, J.M. (eds.) BLOCKCHAIN 2019. AISC, vol. 1010, pp. 11–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23813-1_2
Koshy, P., Koshy, D., McDaniel, P.: An analysis of anoymity in Bitcoin using P2P network traffic. In: International Conference on Financial Cryptography and Data Security (FC) (2014)
Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of Monero’s blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_9
Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency and privacy with payment-channel networks. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (2017)
Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous Multi-Hop Locks for blockchain scalability and interoperability. In: Proceedings of NDSS (2018)
Martinazzi, S.: The evolution of lightning network’s topology during its first year and the influence over its core values. arXiv preprint arXiv:1902.07307 (2019)
Meiklejohn, S., et al.: A fistful of Bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference. ACM (2013)
Möser, M., et al.: An empirical analysis of traceability in the Monero blockchain. In: Proceedings on Privacy Enhancing Technologies (2018)
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report, Manubot (2019)
Nisslmueller, U., Foerster, K.-T., Schmid, S., Decker, C.: Toward active and passive confidentiality attacks on cryptocurrency off-chain networks (2020)
Nowostawski, M., Tøn, J.: Evaluating methods for the identification of off-chain transactions in the Lightning Network. Appl. Sci. 9(12), 2519 (2019)
Pérez-Solà, C., Ranchal-Pedrosa, A., Herrera-Joancomartí, J., Navarro-Arribas, G., Garcia-Alfaro, J.: LockDown: balance availability attack against lightning network channels. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 245–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_14
Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016)
Quesnelle, J.: On the linkability of Zcash transactions (2017)
Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Altshuler Y., Elovici Y., Cremers A., Aharony N., Pentland A. (eds.) Security and Privacy in Social Networks. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4139-7_10
Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans. Inf. Syst. Secur. 1(1), 66–92 (1998)
Rohrer, E., Malliaris, J., Tschorsch, F.: Discharged payment channels: quantifying the lightning network’s resilience to topology-based attacks. In: 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), pp. 347–356. IEEE (2019)
Romiti, M., Victor, F., Moreno-Sanchez, P., Haslhofer, B., Maffei, M.: Cross-layer deanonymization methods in the lightning protocol (2020)
Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_2
Seres, I.A., Gulyás, L., Nagy, D.A., Burcsi, P.: Topological analysis of Bitcoin’s lightning network. arXiv:1901.04972 (2019)
Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_29
Tikhomirov, S., Moreno-Sanchez, P., Maffei, M.: A quantitative analysis of security, anonymity and scalability for the lightning network. Cryptology ePrint Archive, Report 2020/303 (2020). https://eprint.iacr.org/2020/303
Tikhomirov, S., Pickhardt, R., Biryukov, A., Nowostawski, M.: Probing channel balances in the lightning network (2020)
Tochner, S., Schmid, S., Zohar, A.: Hijacking routes in payment channel networks: a predictability tradeoff. arXiv:1909.06890 (2019)
Werman, S., Zohar, A.: Avoiding deadlocks in payment channel networks. In: Garcia-Alfaro, J., Herrera-Joancomartí, J., Livraga, G., Rios, R. (eds.) DPM/CBT -2018. LNCS, vol. 11025, pp. 175–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00305-0_13
Wright, M.K., Adler, M., Levine, B.N., Shields, C.: The predecessor attack: an analysis of a threat to anonymous communications systems. ACM Trans. Inf. Syst. Secur. 7(4), 489–522 (2004)
Yen, J.Y.: An algorithm for finding shortest routes from all source nodes to a given destination in general networks. Q. Appl. Math. 27, 526–530 (1970)
Yu, Z., Au, M.H., Yu, J., Yang, R., Xu, Q., Lau, W.F.: New empirical traceability analysis of CryptoNote-style blockchains. In: Proceedings of the 23rd International Conference on Financial Cryptography and Data Security (FC) (2019)
Zhang, Y., Yang, D., Xue, G., CheaPay: an optimal algorithm for fee minimization in blockchain-based payment channel networks. In: IEEE International Conference on Communications (ICC) (2019)
Acknowledgements
George Kappos, Haaroon Yousaf and Sarah Meiklejohn are supported in part by EPSRC Grant EP/N028104/1, and in part by the EU H2020 TITANIUM project under grant agreement number 740558. Sanket Kanjalkar and Andrew Miller are supported by the NSF under agreement numbers 1801369 and 1943499. Sergi Delgado-Segura was partially funded by EPSRC Grant EP/N028104/1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Financial Cryptography Association
About this paper
Cite this paper
Kappos, G. et al. (2021). An Empirical Analysis of Privacy in the Lightning Network. In: Borisov, N., Diaz, C. (eds) Financial Cryptography and Data Security. FC 2021. Lecture Notes in Computer Science(), vol 12674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64322-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-64322-8_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-64321-1
Online ISBN: 978-3-662-64322-8
eBook Packages: Computer ScienceComputer Science (R0)