iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-662-54428-0_5
Evidential Deformable Model for Contour Tracking. Application on Brain Cine MR Sequences | SpringerLink
Skip to main content

Evidential Deformable Model for Contour Tracking. Application on Brain Cine MR Sequences

  • Chapter
  • First Online:
Metaheuristics for Medicine and Biology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 704))

  • 542 Accesses

Abstract

The goal of this paper is to introduce an efficient evidential particle filter for complex shapes tracking. The particularity of that particle filter is not only the fair use of the observation at the current time in the update step of it by performing a curve evolution but also it represents a bridge between Probability function and Evidence theory. This bridge can be illustrated by incorporating a data fusion step in the update phase. This method builds a track by selecting the best particles between the particle candidates. This re-sampling phase is based on choosing the particles possessing the higher value of the basic belief assignment function. The values of these basic belief assignment functions are resulting from the fusion process of two distinctive sources of information. The first source is the energy functional and the second one is the local sensitive histogram. The evaluation of our approach, which is made on a realistic Brain cine RM sequences, aims at tracking the motion of the walls of the third ventricle. Therefore, the latter shows its obvious and clear efficiency. In order to validate our proposal, we present a comparative study between our proposal and the state of the art methods. The obtained results are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Angelova, L. Mihaylova, Extended object tracking using monte carlo methods. Trans. Sig. Proc. 56(2), 825–832 (2008)

    Article  MathSciNet  Google Scholar 

  2. M.S. Arulampalam, S. Maskell, N. Gordon, A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)

    Article  Google Scholar 

  3. D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  4. T. Denux, An evidence-theoretic neural network classifier, in IEEE International Conference on Systems, Man and Cybernetics (1995), pp. 712–717

    Google Scholar 

  5. N.J. Gordon, D.J. Salmond, A.F.M. Smith, Novel approach to nonlinear/non-gaussian bayesian state estimation. IEEE Proc. F Radar Signal Process. 140(2), 107–113 (1993)

    Article  Google Scholar 

  6. F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, P.-J. Nordlund, Particle filters for positioning, navigation, and tracking. Trans. Sig. Proc. 50(2), 425–437 (2002)

    Article  Google Scholar 

  7. S. He, Q. Yang, R.W.H. Lau, J. Wang, M.-H. Yang, Visual tracking via locality sensitive histograms, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 2427–2434

    Google Scholar 

  8. J. Hodel, P. Decq, A. Rahmouni, S. Bastuji-Garin, A. Maraval, C. Combes, B. Jarraya, C. Le Guérinel, A. Gaston, Brain ventricular wall movement assessed by a gated cine mr truefisp sequence in patients treated with endoscopic third ventriculostomy. Eur. Radiol. 19(12), 2789–2797 (2009)

    Article  Google Scholar 

  9. M. Isard, A. Blake, Condensation - conditional density propagation for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)

    Article  Google Scholar 

  10. J.D. Jackson, A.J. Yezzi, S. Soatto, Tracking deformable moving objects under severe occlusions, in IEEE CDC (2004)

    Google Scholar 

  11. U.K. Jaliya, H.S. Parekh, D.G. Thakore, A survey on object detection and tracking methods, in International Journal of Innovative Research in Computer and Communication Engineering, 2, Feb 2014

    Google Scholar 

  12. R.E. Kalman. A new approach to linear filtering and prediction problems, in ASME Journal of Basic Engineering (1960)

    Google Scholar 

  13. N.K. Kanhere, S.T. Birchfield, Real-time incremental segmentation and tracking of vehicles at low camera angles using stable features, in IEEE Transactions on Intelligent Transportation Systems (2008), pp. 148–160

    Google Scholar 

  14. M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  15. R. Kennes, P. Smets, Computational aspects of the mobius transform, in CoRR (2013). arXiv:1304.1122

  16. V. Kurtcuoglu, M. Soellinger, P. Summers, K. Boomsma, D. Poulikakos, P. Boesiger, Y. Ventikos, Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of sylvius. J. Biomech. 40(6), 1235–1245 (2007)

    Article  Google Scholar 

  17. V. Kurtcuoglu, M. Soellinger, P. Summers, D. Poulikakos, P. Boesiger, Mixing and modes of mass transfer in the third cerebral ventricle: a computational analysis. J. Biomech. Eng. 129(5), 695–702 (2007)

    Article  Google Scholar 

  18. S. Lankton, S. Member, A. Tannenbaum, A.: localizing region-based active contours, in IEEE Transaction on Image Processing (2008), pp. 2029–2039

    Google Scholar 

  19. J. MacCormick, A. Blake, A probabilistic exclusion principle for tracking multiple objects. Int. J. Comput. Vis. 39(1), 57–71 (2000)

    Article  MATH  Google Scholar 

  20. D.J.C. MacKay, Introduction to monte carlo methods, in Proceedings of the NATO Advanced Study Institute on Learning in Graphical Models (Kluwer Academic Publishers, Norwell, MA, USA, 1998), pp. 175–204

    Google Scholar 

  21. A. Mayer, H. Greenspan, An adaptive mean-shift framework for mri brain segmentation. IEEE Trans. Med. Imaging 28(8), 1238–1250 (2009)

    Article  Google Scholar 

  22. A. Nakib, F. Aiboud, J. Hodel, P. Siarry, P. Decq, Third brain ventricle deformation analysis using fractional differentiation and evolution strategy in brain cine-mri, in SPIE medical imaging (International Society for Optics and Photonics, 2010), pp. 76232I–76232I

    Google Scholar 

  23. A. Nakib, P. Siarry, P. Decq, A framework for analysis of brain cine mr sequences. Comput. Med. Imaging Graph. 36(2), 152–168 (2012)

    Article  Google Scholar 

  24. M. Niethammer, A. Tannenbaum, Dynamic geodesic snakes for visual tracking, in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1 (IEEE, 2004), pp. I–660

    Google Scholar 

  25. Dr. D. Nitnawwre, R. Mishra, M.K. Chouhan, Multiple object tracking by kernel based centroid method for improve localization, in International Journal of Advanced Research in Computer Science and Software Engineering (2012), pp. 137–140

    Google Scholar 

  26. L.M. Novak, Optimal target t designation techniques. IEEE Trans. Aerosp. Electron. Syst. 5, 676–684 (1981)

    Article  Google Scholar 

  27. N. Paragios, R. Deriche, Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 266–280 (2000)

    Article  Google Scholar 

  28. M. Pupilli, A. Calway, Real-time camera tracking using a particle filter, in Proceedings of British Machine Vision Conference (2005), pp. 519–528

    Google Scholar 

  29. Y. Rathi, N. Vaswani, A. Tannenbaum, A. Yezzi, Particle filtering for geometric active contours with application to tracking moving and deforming objects, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2 (IEEE, 2005), pp. 2–9

    Google Scholar 

  30. S Saravanakumar, A Vadivel, CG Saneem Ahmed, Multiple human object tracking using background subtraction and shadow removal techniques, in IEEE International Conference on Signal and Image Processing (ICSIP), 2010 (IEEE, 2010), pp. 79–84

    Google Scholar 

  31. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)

    MATH  Google Scholar 

  32. C. Shen, J. Kim, H. Wang, Generalized kernel-based visual tracking. IEEE Trans. Circuits Syst. Video Technol. 20(1), 119–130 (2010)

    Article  Google Scholar 

  33. P. Smets, Quantifying beliefs by belief functions: an axiomatic justification, in Proceedings of the 13th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’93 (Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 1993), pp. 598–603

    Google Scholar 

  34. P. Smets, Decision making in the tbm: the necessity of the pignistic transformation. Int. J. Approx. Reason. 38(2), 133–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Smets, R. Kennes, The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Smets, R. Kruse, The transferable belief model for belief representation, in Uncertainty Management in Information Systems (1996), pp. 343–368

    Google Scholar 

  37. H. Tao, H.S. Sawhney, R. Kumar, Object tracking with bayesian estimation of dynamic layer representations. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 75–89 (2002)

    Article  Google Scholar 

  38. D. Terzopoulos, R. Szeliski, Tracking with kalman snakes, in Active vision (MIT press, 1993), pp. 3–20

    Google Scholar 

  39. N. Vaswani, A. Roy Chowdhury, R. Chellappa, Activity recognition using the dynamics of the configuration of interacting objects, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, vol. 2 (IEEE, 2003), pp. II–633

    Google Scholar 

  40. A. Yilmaz, X. Li, M. Shah, Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1531–1536 (2004)

    Article  Google Scholar 

  41. A. Yilmaz, O. Javed, M. Shah, Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)

    Google Scholar 

  42. L.M. Zouhal, T. Denoeux, An adaptive k-nn rule based on Dempster–Shafer theory, in Proceedings of the 6th International Conference on Computer Analysis of Images and Patterns (CAIP’95 (Springer, 1995), pp. 310–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Nakib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Naffakhi, S., Nakib, A., Hamouda, A. (2017). Evidential Deformable Model for Contour Tracking. Application on Brain Cine MR Sequences. In: Nakib, A., Talbi, EG. (eds) Metaheuristics for Medicine and Biology. Studies in Computational Intelligence, vol 704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54428-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54428-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54426-6

  • Online ISBN: 978-3-662-54428-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics