iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-662-53536-3_9
Parameterized Power Vertex Cover | SpringerLink
Skip to main content

Parameterized Power Vertex Cover

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9941))

Included in the following conference series:

Abstract

We study a recently introduced generalization of the Vertex Cover (VC) problem, called Power Vertex Cover (PVC). In this problem, each edge of the input graph is supplied with a positive integer demand. A solution is an assignment of (power) values to the vertices, so that for each edge one of its endpoints has value as high as the demand, and the total sum of power values assigned is minimized.

We investigate how this generalization affects the complexity of Vertex Cover from the point of view of parameterized algorithms. On the positive side, when parameterized by the value of the optimal P, we give an \(O^*(1.274^P)\) branching algorithm (\(O^*\) is used to hide factors polynomial in the input size), and also an \(O^*(1.325^P)\) algorithm for the more general asymmetric case of the problem, where the demand of each edge may differ for its two endpoints. When the parameter is the number of vertices k that receive positive value, we give \(O^*(1.619^k)\) and \(O^*(k^k)\) algorithms for the symmetric and asymmetric cases respectively, as well as a simple quadratic kernel for the asymmetric case.

We also show that PVC becomes significantly harder than classical VC when parameterized by the graph’s treewidth t. More specifically, we prove that unless the ETH is false, there is no \(n^{o(t)}\) algorithm for PVC. We give a method to overcome this hardness by designing an FPT approximation scheme which obtains a \((1+\epsilon )\)-approximation to the optimal solution in time FPT in parameters t and \(1/\epsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A solution of the relaxation of the former is clearly a solution of the latter. Conversely, if \(x_i+x_j\ge w_{i,j}\), set \(x_{i,j}=x_i/w_{i,j}{} \) to get a solution of the former.

References

  1. Angel, E., Bampis, E., Chau, V., Kononov, A.: Min-power covering problems. In: Elbassioni, K., et al. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 367–377. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_32

    Chapter  Google Scholar 

  2. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)

    Article  Google Scholar 

  3. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(4042), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chlebík, M., Chlebíková, J.: Crown reductions for the minimum weighted vertex cover problem. Discrete Appl. Math. 156(3), 292–312 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cygan, M.: Deterministic parameterized connected vertex cover. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 95–106. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Fellows, M.R.: Blow-ups, win/win’s, and crown rules: some new directions in fpt. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theor. Comput. Syst. 41(3), 501–520 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lampis, M.: A kernel of order 2 k-c log k for vertex cover. Inf. Process. Lett. 111(23–24), 1089–1091 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lampis, M.: Parameterized approximation schemes using graph widths. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 775–786. Springer, Heidelberg (2014)

    Google Scholar 

  11. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)

    Article  Google Scholar 

  12. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: improved algorithms for connected vertex cover and tree cover. Theory Comput. Syst. 43(2), 234–253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  14. Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover. J. Algorithms 47(2), 63–77 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, 1st edn. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lampis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Angel, E., Bampis, E., Escoffier, B., Lampis, M. (2016). Parameterized Power Vertex Cover. In: Heggernes, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2016. Lecture Notes in Computer Science(), vol 9941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53536-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53536-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53535-6

  • Online ISBN: 978-3-662-53536-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics