Abstract
Dynamic dynamic logic (DDL) is a generalisation of propositional dynamic logic PDL and dynamic epistemic logic. In this paper, we develop algebraic semantics for DDL without the constant program. We introduce inductive and continuous modal Kleene algebras for PDL and show the validity of reduction axioms in algebraic models and hence the algebraic completeness of DDL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Danecki, R.: Nondeterministic propositional dynamic logic with intersection is decidable. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 34–53. Springer, Heidelberg (1985)
Enderton, H.B.: Computability Theory: An Introduction to Recursion Theory. Elsevier (2011)
Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18(2), 194–211 (1979)
Harel, D.: Dynamic logic. In: Handbook of Philosophical Logic, vol. II, pp. 496–604. D. Reidel Publishers (1984)
Kozen, D.: A representation theorem for models of *-free pdl. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 351–362. Springer, Heidelberg (1980)
Kozen, D.: On induction vs.*-continuity. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 167–176. Springer, Heidelberg (1982)
Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Languages and Systems 19(3), 427–443 (1997)
Kurz, A., Palmigiano, A.: Epistemic updates on algebras. Logical Methods in Computer Science 9(4:17), 1–28 (2013)
Lutz, C., Walther, D.: PDL with Negation of Atomic Programs. Journal of Applied Non-Classical Logic 15(2), 189–214 (2005)
Lutz, C.: PDL with intersection and converse is decidable. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 413–427. Springer, Heidelberg (2005)
Ma, M., Sano, K.: How to update neighborhood models. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI. LNCS, vol. 8196, pp. 204–217. Springer, Heidelberg (2013)
Ma, M., Palmigiano, A., Sadrzadeh, M.: Algebraic semantics and model completeness for intuitionistic public announcement logic. Annals of Pure and Applied Logic 165(4), 963–995 (2014)
Pratt, V.: Dynamic algebras: examples, constructions, applications. Studia Logica 50(3-4), 571–605 (1991)
Resende, P.: Lectures on étale groupoids, inverse semigroups and quantales (2006), http://www.math.ist.utl.pt/~pmr/poci55958/gncg51gamap-version2.pdf
Segerberg, K.: A completeness theorem in the modal logic of programs. Banach Center Publications 9(1), 31–46 (1982)
Girard, P., Seligman, J., Liu, F.: General dynamic dynamic logic. In: Ghilardi, S., Bolander, T., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp. 239–260. Colledge Publications (2012)
Tiuryn, J., Harel, D., Kozen, D.: Dynamic Logic. MIT Press (2000)
Plaza, L.: Logics of public communications. Synthese 158(2), 165–179 (2007)
Vakarelov, D.: Filtration theorem for dynamic algebras with tests and inverse operator. In: Salwicki, A. (ed.) Logic of Programs 1980. LNCS, vol. 148, pp. 314–324. Springer, Heidelberg (1983)
van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Logica 99(1), 61–92 (2011)
van Ditmarsch, H., van der Hoek, W., Kooi, B.P.: Dynamic epistemic logic. Springer Science & Business Media (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ma, M., Seligman, J. (2015). Algebraic Semantics for Dynamic Dynamic Logic. In: van der Hoek, W., Holliday, W., Wang, Wf. (eds) Logic, Rationality, and Interaction. LORI 2015. Lecture Notes in Computer Science(), vol 9394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48561-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-662-48561-3_21
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48560-6
Online ISBN: 978-3-662-48561-3
eBook Packages: Computer ScienceComputer Science (R0)