iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-662-46335-2_3
Enhanced Fast Causal Network Inference over Event Streams | SpringerLink
Skip to main content

Enhanced Fast Causal Network Inference over Event Streams

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XVII

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 8970))

  • 549 Accesses

Abstract

This paper addresses causal inference and modeling over event streams where data have high throughput, are unbounded, and may arrive out of order. The availability of large amount of data with these characteristics presents several new challenges related to causal modeling, such as the need for fast causal inference operations while ensuring consistent and valid results. There is no existing work specifically for such a streaming environment. We meet the challenges by introducing a time-centric causal inference strategy which leverages temporal precedence information to decrease the number of conditional independence tests required to establish the causalities between variables in a causal network. (Dependency and temporal precedence of cause over effect are the two properties of a causal relationship.) Moreover, we employ change-driven causal network inference to safely reduce the running time further. In this paper we present the Order-Aware Temporal Network Inference algorithm to model the temporal precedence relationships into a temporal network and then propose the Enhanced Fast Causal Network Inference algorithm for learning a causal network faster using the temporal network. Experiments using synthetic and real datasets demonstrate the efficacy of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent streaming through time: a vision for event stream processing. In: Proceedings of the Third Biennial Conference on Innovative Data Systems Research, CIDR 2007, pp. 363–374 (2007)

    Google Scholar 

  2. Zhao, Y., Strom, R.: Exploitng event stream interpretation in publish-subscribe systems. In: Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed Computing, PODC 2001, pp. 219–228 (2001)

    Google Scholar 

  3. Johnson, T., Muthukrishnan, S., Rozenbaum, I.: Monitoring regular expressions on out-of-order streams. In: Proceedings of the IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 1315–1319 (2007)

    Google Scholar 

  4. Li, M., Liu, M., Ding, L., Rundensteiner, E.A., Mani, M.: Event stream processing with out-of-order data arrival. In: Proceedings of the 27th International Conference on Distributed Computing Systems Workshops, ICDCSW 2007, pp. 67–74. IEEE Computer Society, Washington, DC, USA (2007)

    Google Scholar 

  5. Liu, M., Li, M., Golovnya, D., Rundensteiner, E., Claypool, K.: Sequence pattern query processing over out-of-order event streams. In: Proceedings of the IEEE 25th International Conference on Data Engineering, ICDE 2009, pp. 784–795 (2009)

    Google Scholar 

  6. Li, J., Tufte, K., Shkapenyuk, V., Papadimos, V., Johnson, T., Maier, D.: Out-of-order processing: a new architecture for high-performance stream systems. Proc. VLDB Endow. 1(1), 274–288 (2008)

    Article  Google Scholar 

  7. Wang, K., Yu, Y.: A query-matching mechanism over out-of-order event stream in iot. Int. J. Ad Hoc Ubiquitous Comput. 13(3/4), 197–208 (2013)

    Article  Google Scholar 

  8. Heckerman, D.: A Bayesian approach to learning causal networks. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI 1995, pp. 285–295 (1995)

    Google Scholar 

  9. Ellis, B., Wong, W.H.: Learning causal Bayesian network structures from experimental data. J. Am. Stat. Assoc. 103(482), 778–789 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, G., Leong, T.-Y.: Active learning for causal Bayesian network structure with non-symmetrical entropy. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 290–301. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Meganck, S., Leray, P., Manderick, B.: Learning causal Bayesian networks from observations and experiments: a decision theoretic approach. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds.) MDAI 2006. LNCS (LNAI), vol. 3885, pp. 58–69. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  13. Spirtes, P., Glymour, C.N., Scheines, R.: Causality from probability. In: Proceedings of the Conference on Advanced Computing for the Social Sciences, ACSS 1990 (1990)

    Google Scholar 

  14. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)

    Google Scholar 

  15. Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning Bayesian networks from data: an information-theory based approach. Artif. Intell. 137(1–2), 43–90 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pearl, J.: Causal diagrams for empirical research. Biometrika 82, 669–710 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Spirtes, P., Meek, C.: Learning Bayesian networks with discrete variables from data. In: Proceedings of the First International Conference on Knowledge Discovery and Data Mining, KDD 1995, pp. 294–299 (1995)

    Google Scholar 

  18. Chow, Y.S., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales. Springer, New York (1978)

    Book  MATH  Google Scholar 

  19. Prakasa Rao, B.: Conditional independence, conditional mixing and conditional association. Ann. Inst. Stat. Math. 61(2), 441–460 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Popper, K.: The Logic of Scientific Discovery, Reprint edition. Routledge, New York (1992)

    Google Scholar 

  21. Hamilton, H.J., Karimi, K.: The TIMERS II algorithm for the discovery of causality. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 744–750. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Utrera, A.C., Olmedo, M.G., Callejon, S.M.: A score based ranking of the edges for the pc algorithm. In: Proceedings of the 4th European Workshop on Probabilistic Graphical Models, PGM 2008, pp. 41–48 (2008)

    Google Scholar 

  23. Acharya, S., Lee, B.S.: Fast causal network inference over event streams. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 222–235. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Chickering, D.M.: Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2, 445–498 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Borchani, H., Chaouachi, M., Ben Amor, N.: Learning causal Bayesian networks from incomplete observational data and interventions. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 17–29. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. de Campos, L.M.: A scoring function for learning Bayesian networks based on mutual information and conditional independence tests. J. Mach. Learn. Res. 7, 2149–2187 (2006)

    MATH  MathSciNet  Google Scholar 

  27. Bishop, Y.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge (1975)

    MATH  Google Scholar 

  28. Kullback, S.: Information Theory and Statistics, 2nd edn. Dover Publication, New York (1968)

    Google Scholar 

  29. Verma, T., Pearl, J.: Causal networks: Semantics and expressiveness. In: Proceedings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence, UAI 1988, pp. 69–78 (1988)

    Google Scholar 

  30. Geiger, D., Pearl, J.: On the logic of causal models. In: Proceedings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence, UAI 1988, pp. 3–14 (1988)

    Google Scholar 

  31. Pearl, J.: Graphs, causality, and structural equation models. Sociol. Methods Res. 27, 226–284 (1998)

    Article  Google Scholar 

  32. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)

    Article  Google Scholar 

  33. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml/datasets/Diabetes

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Acharya, S., Suk Lee, B. (2015). Enhanced Fast Causal Network Inference over Event Streams. In: Hameurlain, A., Küng, J., Wagner, R., Bellatreche, L., Mohania, M. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XVII. Lecture Notes in Computer Science(), vol 8970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46335-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46335-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46334-5

  • Online ISBN: 978-3-662-46335-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics