iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-662-45049-9_27
Solving the Multiobjective Multiple Traveling Salesmen Problem Using Membrane Algorithm | SpringerLink
Skip to main content

Solving the Multiobjective Multiple Traveling Salesmen Problem Using Membrane Algorithm

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

Abstract

The multiple traveling salesmen problem (mTSP) is a generalization of the classical traveling salesman problem (TSP). The mTSP is more appropriate for real-life applications than the TSP, however, the mTSP has not received the same amount of attention. Due to the high complexity of the mTSP, a more efficient algorithm proposed for mTSP must be based on a global search procedure. Membrane algorithms are a class of hybrid intelligence algorithms, which has been introduced recently as a global optimization technique. In this work, a new membrane algorithm for solving mTSP with different numbers of salesmen and problem sizes is described. The experiment results are compared with several multiobjective evolutionary strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Singh, A., Baghel, A.S.: A new grouping genetic algorithm approach to the multiple traveling salesperson problem. Soft Computing 13(1), 95–101 (2009)

    Article  Google Scholar 

  2. Pan, L., Diaz-Pernil, D., Pérez-Jiménez, M.J.: Computation of Ramsey numbers by P systems with active membranes. International Journal of Foundations of Computer Science 22(1), 29–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. He, J., Miao, Z., Zhang, Z., Shi, X.: Solving multidimensional 0C1 knapsack problem by tissue P systems with cell division. In: Fourth International Conference on Bio-Inspired Computing, BIC-TA 2009, pp. 1–5 (2009)

    Google Scholar 

  4. Pan, L., Păun, G.: Spiking neural P systems with anti-spikes. Inernational Journal of Computers, Communications and Control 4(3), 273–282 (2009)

    Google Scholar 

  5. Zhang, X., Zeng, X., Pan, L.: On languages generated by asynchronous spiking neural P systems. Theoretical Computer Science 410(26), 2478–2488 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Niu, Y., Pan, L., Pérez-Jiménez, M.J., Font, M.R.: A tissue P systems based uniform solution to tripartite matching problem. Fundamenta Informaticae 109(2), 179–188 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron division and budding. Science China Information Sciences 54(8), 1596–1607 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, J., Hoogeboom, H.J., Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with weights. Neural Computation 22(10), 2615–2646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, G., Cheng, J., Gheorghe, M., Meng, Q.: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems. Applied Soft Computing 13(3), 1528–1542 (2013)

    Article  Google Scholar 

  10. Cheng, J., Zhang, G., Neri, F.: Enhancing distributed differential evolution with multicultural migration for global numerical optimization. Information Sciences 247, 72–93 (2013)

    Article  MathSciNet  Google Scholar 

  11. Zhang, G., Zhou, F., Huang, X., Cheng, J., Gheorghe, M., Ipate, F., Lefticaru, R.: A novel membrane algorithm based on particle swarm optimization for solving broadcasting problems. Journal of Universal Computer Science 18(13), 1821–1841 (2012)

    Google Scholar 

  12. Zhang, G., Cheng, J., Gheorghe, M.: Dynamic behavior analysis of membrane-inspired evolutionary algorithms. International Journal of Computers, Communications & Control 9(2), 227–242 (2014)

    Google Scholar 

  13. He, J., Xiao, J., Shi, X., Song, T.: A Membrane-Inspired Algorithm with a Memory Mechanism for Knapsack Problem. Journal of Zhejiang University Science C: Computer & Electronics 14(8), 612–622 (2013)

    Article  Google Scholar 

  14. Xiao, J., Zhang, X., Xu, J.: A Membrane Evolutionary Algorithm for DNA Sequences Design in DNA Computing. Chinese Science Bulletin 57(6), 698–706 (2012)

    Article  Google Scholar 

  15. Xiao, J., Jiang, Y., He, J., Cheng, Z.: A Dynamic Membrane Evolutionary Algorithm for Solving DNA Sequences Design with Minimum Free Energy. MATCH Communications in Mathematical and in Computer Chemistry 70(3), 971–986 (2013)

    MathSciNet  Google Scholar 

  16. Zhao, J., Wang, N.: A bio-inspired algorithm based on membrane computing and its application to gasoline blending scheduling. Computers and Chemical Engineering 35, 272–283 (2011)

    Article  Google Scholar 

  17. Tang, L., Liu, J., Rong, A., Yang, Z.: A multiple traveling salesman problem model for hot rolling schefule in Shanghai Baoshan Iron and Steel Complex. European Journal of Operationa Research 124(2), 267–282 (2000)

    Article  MATH  Google Scholar 

  18. Arthur, E., Cliff, T.: A new approach to solving the multiple traveling salesperso problem using genetic algorithms. European Journal of Operational Research 175, 246–257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miettinen K.: Nonliear Multiobjective Optimization. Kluwer, Norwell (1999)

    Google Scholar 

  20. Shim, V., Tan, K., Chia, J.: Probabilistic based evolutionary optimizer in bi-objective traveling salesman problem. In: Proc. 8th International Conference on Simulated Evlutionry Learning, pp. 309–324 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, J. (2014). Solving the Multiobjective Multiple Traveling Salesmen Problem Using Membrane Algorithm. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics