Abstract
Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds.
Research partially supported by a Scientific Grant-in-Aid from Ministry of Education, Culture, Sports, Science and Technology of Japan. See http://arxiv.org/abs/1311.2466 for the full version of this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optimization 8(1), 87–96 (2011)
Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics 160(1), 53–60 (2012)
Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)
Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded treewidth. The Computer Journal 51(3), 255–269 (2008)
Bonnet, E., Paschos, V.T.: Parameterized (in)approximability of subset problems. CoRR, abs/1310.5576 (2013)
Courcelle, B., Kanté, M.M.: Graph operations characterizing rank-width and balanced graph expressions. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 66–75. Springer, Heidelberg (2007)
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33(2), 125–150 (2000)
Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: A parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008)
Ebenlendr, T., Krcál, M., Sgall, J.: Graph balancing: a special case of scheduling unrelated parallel machines. In: Teng, S.-H. (ed.) SODA, pp. 483–490. SIAM (2008)
Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Van Le, B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)
Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Information and Computation 209(2), 143–153 (2011)
Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower bounds for problems parameterized with clique-width. In: Charikar, M. (ed.) SODA, pp. 493–502. SIAM (2010)
Golovach, P.A., Thilikos, D.M.: Paths of bounded length and their cuts: Parameterized complexity and algorithms. Discrete Optimization 8(1), 72–86 (2011)
Harland, J., Manyem, P.: Proceedings of the Theory of Computing 2008. Proc. Fourteenth Computing: The Australasian Theory Symp osium (CATS 2008), Wollongong, NSW, Australia, January 22-25. CRPIT, vol. 77. Australian Computer Society (2008)
Lampis, M.: Parameterized maximum path coloring. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 232–245. Springer, Heidelberg (2012)
Marx, D.: Minimum sum multicoloring on the edges of planar graphs and partial k-trees. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 9–22. Springer, Heidelberg (2005)
Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)
Meeks, K., Scott, A.: The parameterised complexity of list problems on graphs of bounded treewidth. CoRR, abs/1110.4077 (2011)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)
Samer, M., Szeider, S.: Tractable cases of the extended global cardinality constraint. In: Harland and Manyem [14], pp. 67–74
Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Syst. Sci. 76(2), 103–114 (2010)
Skowron, P., Faliszewski, P.: Approximating the MaxCover problem with bounded frequencies in FPT time. CoRR, abs/1309.4405 (2013)
Szeider, S.: Not so easy problems for tree decomposable graphs. CoRR, abs/1107.1177 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lampis, M. (2014). Parameterized Approximation Schemes Using Graph Widths. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_64
Download citation
DOI: https://doi.org/10.1007/978-3-662-43948-7_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43947-0
Online ISBN: 978-3-662-43948-7
eBook Packages: Computer ScienceComputer Science (R0)