iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-662-43948-7_64
Parameterized Approximation Schemes Using Graph Widths | SpringerLink
Skip to main content

Parameterized Approximation Schemes Using Graph Widths

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

  • 2770 Accesses

Abstract

Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds.

Research partially supported by a Scientific Grant-in-Aid from Ministry of Education, Culture, Sports, Science and Technology of Japan. See http://arxiv.org/abs/1311.2466 for the full version of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optimization 8(1), 87–96 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics 160(1), 53–60 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded treewidth. The Computer Journal 51(3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bonnet, E., Paschos, V.T.: Parameterized (in)approximability of subset problems. CoRR, abs/1310.5576 (2013)

    Google Scholar 

  6. Courcelle, B., Kanté, M.M.: Graph operations characterizing rank-width and balanced graph expressions. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 66–75. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33(2), 125–150 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: A parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Ebenlendr, T., Krcál, M., Sgall, J.: Graph balancing: a special case of scheduling unrelated parallel machines. In: Teng, S.-H. (ed.) SODA, pp. 483–490. SIAM (2008)

    Google Scholar 

  10. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Van Le, B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Information and Computation 209(2), 143–153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower bounds for problems parameterized with clique-width. In: Charikar, M. (ed.) SODA, pp. 493–502. SIAM (2010)

    Google Scholar 

  13. Golovach, P.A., Thilikos, D.M.: Paths of bounded length and their cuts: Parameterized complexity and algorithms. Discrete Optimization 8(1), 72–86 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Harland, J., Manyem, P.: Proceedings of the Theory of Computing 2008. Proc. Fourteenth Computing: The Australasian Theory Symp osium (CATS 2008), Wollongong, NSW, Australia, January 22-25. CRPIT, vol. 77. Australian Computer Society (2008)

    Google Scholar 

  15. Lampis, M.: Parameterized maximum path coloring. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 232–245. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Marx, D.: Minimum sum multicoloring on the edges of planar graphs and partial k-trees. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 9–22. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)

    Article  Google Scholar 

  18. Meeks, K., Scott, A.: The parameterised complexity of list problems on graphs of bounded treewidth. CoRR, abs/1110.4077 (2011)

    Google Scholar 

  19. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Samer, M., Szeider, S.: Tractable cases of the extended global cardinality constraint. In: Harland and Manyem [14], pp. 67–74

    Google Scholar 

  21. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Syst. Sci. 76(2), 103–114 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Skowron, P., Faliszewski, P.: Approximating the MaxCover problem with bounded frequencies in FPT time. CoRR, abs/1309.4405 (2013)

    Google Scholar 

  23. Szeider, S.: Not so easy problems for tree decomposable graphs. CoRR, abs/1107.1177 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lampis, M. (2014). Parameterized Approximation Schemes Using Graph Widths. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics