iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-54382-1_18
Algorithms and Data Structures for Truncated Hierarchical B–splines | SpringerLink
Skip to main content

Algorithms and Data Structures for Truncated Hierarchical B–splines

  • Conference paper
Mathematical Methods for Curves and Surfaces (MMCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8177))

Abstract

Tensor–product B–spline surfaces are commonly used as standard modeling tool in Computer Aided Geometric Design and for numerical simulation in Isogeometric Analysis. However, when considering tensor–product grids, there is no possibility of a localized mesh refinement without propagation of the refinement outside the region of interest. The recently introduced truncated hierarchical B–splines (THB–splines) [5] provide the possibility of a local and adaptive refinement procedure, while simultaneously preserving the partition of unity property. We present an effective implementation of the fundamental algorithms needed for the manipulation of THB–spline representations based on standard data structures. By combining a quadtree data structure — which is used to represent the nested sequence of subdomains — with a suitable data structure for sparse matrices, we obtain an efficient technique for the construction and evaluation of THB–splines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bornemann, P.B., Cirak, F.: A subdivision–based implementation of the hierarchical B–spline finite element method. Comput. Methods Appl. Mech. Engrg. 253, 584–598 (2012)

    Article  MathSciNet  Google Scholar 

  2. Deng, J., Chen, F., Feng, Y.: Dimensions of spline spaces over T–meshes. J. Comput. Appl. Math. 194, 267–283 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design 30, 331–356 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Forsey, D.R., Bartels, R.H.: Hierarchical B–spline refinement. Comput. Graphics 22, 205–212 (1988)

    Article  Google Scholar 

  5. Giannelli, C., Jüttler, B., Speleers, H.: THB–splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Design 29, 485–498 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comp. Math. (to appear, 2013)

    Google Scholar 

  7. Giannelli, C., Jüttler, B.: Bases and dimensions of bivariate hierarchical tensor–product splines. J. Comput. Appl. Math. 239, 162–178 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gilbert, J.R., Moler, C., Schreiber, R.: Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal. Appl. 13, 333–356 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gonzalez-Ochoa, C., Peters, J.: Localized–hierarchy surface splines (LeSS). In: Proceedings of the 1999 Symposium on Interactive 3D Graphics, pp. 7–15. ACM, New York (1999)

    Chapter  Google Scholar 

  10. Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D–Data with hierarchical tensor product B–splines. In: Méhauté, A.L., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods. In Innovations in Applied Mathematics, pp. 163–172. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  11. Kraft, R.: Adaptive and linearly independent multilevel B–splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  12. Kraft, R.: Adaptive und linear unabhängige Multilevel B–Splines und ihre Anwendungen. PhD Thesis, Universität Stuttgart (1998)

    Google Scholar 

  13. Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B–splines. IEEE Trans. on Visualization and Computer Graphics 3, 228–244 (1997)

    Article  Google Scholar 

  14. Schillinger, D., Dedè, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R.: An isogeometric design–through–analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T–spline CAD surfaces. Comput. Methods Appl. Mech. Engrg., 249–252, 116–150 (2012)

    Google Scholar 

  15. Schumaker, L.L., Wang, L.: Approximation power of polynomial splines on T–meshes. Comput. Aided Geom. Design 29, 599–612 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T–splines and T–NURCCS. ACM Trans. Graphics 22, 477–484 (2003)

    Article  Google Scholar 

  17. Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets For Computer Graphics: Theory and Application, 1st edn. Morgan Kaufmann Publishers, Inc. (1996)

    Google Scholar 

  18. Vuong, A.-V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Engrg. 200, 3554–3567 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yvart, A., Hahmann, S.: Hierarchical triangular splines. ACM Trans. Graphics 24, 1374–1391 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiss, G., Giannelli, C., Jüttler, B. (2014). Algorithms and Data Structures for Truncated Hierarchical B–splines. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54382-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54381-4

  • Online ISBN: 978-3-642-54382-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics