Abstract
Tensor–product B–spline surfaces are commonly used as standard modeling tool in Computer Aided Geometric Design and for numerical simulation in Isogeometric Analysis. However, when considering tensor–product grids, there is no possibility of a localized mesh refinement without propagation of the refinement outside the region of interest. The recently introduced truncated hierarchical B–splines (THB–splines) [5] provide the possibility of a local and adaptive refinement procedure, while simultaneously preserving the partition of unity property. We present an effective implementation of the fundamental algorithms needed for the manipulation of THB–spline representations based on standard data structures. By combining a quadtree data structure — which is used to represent the nested sequence of subdomains — with a suitable data structure for sparse matrices, we obtain an efficient technique for the construction and evaluation of THB–splines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bornemann, P.B., Cirak, F.: A subdivision–based implementation of the hierarchical B–spline finite element method. Comput. Methods Appl. Mech. Engrg. 253, 584–598 (2012)
Deng, J., Chen, F., Feng, Y.: Dimensions of spline spaces over T–meshes. J. Comput. Appl. Math. 194, 267–283 (2006)
Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design 30, 331–356 (2013)
Forsey, D.R., Bartels, R.H.: Hierarchical B–spline refinement. Comput. Graphics 22, 205–212 (1988)
Giannelli, C., Jüttler, B., Speleers, H.: THB–splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Design 29, 485–498 (2012)
Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comp. Math. (to appear, 2013)
Giannelli, C., Jüttler, B.: Bases and dimensions of bivariate hierarchical tensor–product splines. J. Comput. Appl. Math. 239, 162–178 (2013)
Gilbert, J.R., Moler, C., Schreiber, R.: Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal. Appl. 13, 333–356 (1992)
Gonzalez-Ochoa, C., Peters, J.: Localized–hierarchy surface splines (LeSS). In: Proceedings of the 1999 Symposium on Interactive 3D Graphics, pp. 7–15. ACM, New York (1999)
Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D–Data with hierarchical tensor product B–splines. In: Méhauté, A.L., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods. In Innovations in Applied Mathematics, pp. 163–172. Vanderbilt University Press, Nashville (1997)
Kraft, R.: Adaptive and linearly independent multilevel B–splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)
Kraft, R.: Adaptive und linear unabhängige Multilevel B–Splines und ihre Anwendungen. PhD Thesis, Universität Stuttgart (1998)
Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B–splines. IEEE Trans. on Visualization and Computer Graphics 3, 228–244 (1997)
Schillinger, D., Dedè, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R.: An isogeometric design–through–analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T–spline CAD surfaces. Comput. Methods Appl. Mech. Engrg., 249–252, 116–150 (2012)
Schumaker, L.L., Wang, L.: Approximation power of polynomial splines on T–meshes. Comput. Aided Geom. Design 29, 599–612 (2012)
Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T–splines and T–NURCCS. ACM Trans. Graphics 22, 477–484 (2003)
Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets For Computer Graphics: Theory and Application, 1st edn. Morgan Kaufmann Publishers, Inc. (1996)
Vuong, A.-V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Engrg. 200, 3554–3567 (2011)
Yvart, A., Hahmann, S.: Hierarchical triangular splines. ACM Trans. Graphics 24, 1374–1391 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kiss, G., Giannelli, C., Jüttler, B. (2014). Algorithms and Data Structures for Truncated Hierarchical B–splines. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-54382-1_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54381-4
Online ISBN: 978-3-642-54382-1
eBook Packages: Computer ScienceComputer Science (R0)