iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-45221-5_19
Complexity Analysis in Presence of Control Operators and Higher-Order Functions | SpringerLink
Skip to main content

Complexity Analysis in Presence of Control Operators and Higher-Order Functions

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8312))

  • 1148 Accesses

Abstract

A polarized version of Girard, Scedrov and Scott’s Bounded Linear Logic is introduced and its normalization properties studied. Following Laurent [25], the logic naturally gives rise to a type system for the λμ-calculus, whose derivations reveal bounds on the time complexity of the underlying term. This is the first example of a type system for the λμ-calculus guaranteeing time complexity bounds for typable programs.

An extended version of this paper including more details is available [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Accattoli, B., Dal Lago, U.: On the invariance of the unitary cost model for head reduction. In: RTA. LIPIcs, vol. 15, pp. 22–37 (2012)

    Google Scholar 

  2. Ariola, Z.M., Herbelin, H.: Minimal classical logic and control operators. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 871–885. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Baillot, P., Coppola, P., Dal Lago, U.: Light logics and optimal reduction: Completeness and complexity. Information and Computation 209(2), 118–142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baillot, P., Mazza, D.: Linear logic by levels and bounded time complexity. Theoretical Computer Science 411(2), 470–503 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-calculus. Information and Computation 207(1), 41–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Curien, P.-L., Herbelin, H.: The duality of computation. In: ICFP, pp. 233–243. ACM (2000)

    Google Scholar 

  7. Dal Lago, U., Gaboardi, M.: Linear dependent types and relative completeness. Logical Methods in Computer Science 8(4) (2012)

    Google Scholar 

  8. Dal Lago, U., Hofmann, M.: Bounded linear logic, revisited. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 80–94. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Dal Lago, U., Pellitta, G.: Complexity analysis in presence of control operators and higher-order functions (long version), http://arxiv.org/abs/1310.1763

  10. de Bakker, J.W., de Bruin, A., Zucker, J.: Mathematical theory of program correctness. Prentice-Hall International Series in Computer Science. Prentice Hall (1980)

    Google Scholar 

  11. de Groote, P.: A CPS-translation of the λμ-calculus. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 85–99. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. de Groote, P.: On the relation between the λμ-calculus and the syntactic theory of sequential control. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 31–43. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  13. de Groote, P.: An environment machine for the λμ-calculus. Mathematical Structures in Computer Science 8(6), 637–669 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felleisen, M.: On the expressive power of programming languages. In: Jones, N. (ed.) ESOP 1990. LNCS, vol. 432, pp. 134–151. Springer, Heidelberg (1990)

    Google Scholar 

  15. Gaboardi, M., Ronchi Della Rocca, S.: A soft type assignment system for lambda-calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 253–267. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1), 1–101 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Girard, J.-Y.: A new constructive logic: Classical logic. Mathematical Structures in Computer Science 1(3), 255–296 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Girard, J.-Y.: Light linear logic. Information and Computation 143(2), 175–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Girard, J.-Y., Scedrov, A., Scott, P.: Bounded linear logic: a modular approach to polynomial-time computability. Theoretical Computer Science 97(1), 1–66 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Griffin, T.: A formulae-as-types notion of control. In: POPL, pp. 47–58. ACM Press (1990)

    Google Scholar 

  21. Gulwani, S.: Speed: Symbolic complexity bound analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 51–62. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Jost, S., Hammond, K., Loidl, H.-W., Hofmann, M.: Static determination of quantitative resource usage for higher-order programs. In: POPL, Madrid, Spain. ACM Press (2010)

    Google Scholar 

  23. Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Science 318(1), 163–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laurent, O.: Étude de la polarisation en logique. Thèse de doctorat, Université Aix-Marseille II (March 2002)

    Google Scholar 

  25. Laurent, O.: Polarized proof-nets and λμ-calculus. Theoretical Computer Science 290(1), 161–188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ong, C.-H.L., Stewart, C.A.: A Curry-Howard foundation for functional computation with control. In: POPL, pp. 215–227. ACM Press (1997)

    Google Scholar 

  27. Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS (LNAI), vol. 624, pp. 190–201. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  28. Schöpp, U.: Stratified bounded affine logic for logarithmic space. In: LICS, pp. 411–420 (2007)

    Google Scholar 

  29. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The worst case execution time problem - overview of methods and survey of tools. ACM Transactions on Embedded Computing Systems (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dal Lago, U., Pellitta, G. (2013). Complexity Analysis in Presence of Control Operators and Higher-Order Functions. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2013. Lecture Notes in Computer Science, vol 8312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45221-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45221-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45220-8

  • Online ISBN: 978-3-642-45221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics