iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-40728-4_78
Vehicle Plate Recognition Using Improved Neocognitron Neural Network | SpringerLink
Skip to main content

Vehicle Plate Recognition Using Improved Neocognitron Neural Network

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2013 (ICANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8131))

Included in the following conference series:

Abstract

This paper describes a novel vehicle plate recognition algorithm based on text detection and improved neocognitron neural network, similar to [1] and based on Fukushima’s neocognitron. The proposed recognition algorithm allows us to improve the recognition speed and accuracy comparing to both traditional neocognitron and some state-of-art algorithms (multilayer perceptron, topological methods). It can be used as a solution for image classification and analysis tasks. As an example, the neocognitron can be utilized for symbols recognition [2]. We propose several modifications comparing to the Fukushima’s modification of the neocognitron: namely, layer dimensions adjustment, threshold function and connection Gaussian kernel parameters estimation. The patterns’ width and height are taken into account independently in order to improve the recognition of patterns of slightly different dimensions. The learning and recognition calculations are performed as FFT convolutions in order to overcome the complexity of the neocognitron output calculations. The algorithm was tested on low-resolution (360 ×288) video sequences and gave more accurate results comparing to the state-of-the-art methods for low-resolution test set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fukushima, K.: Neocognitron for handwritten digit recognition. Neurocomputing 51, 161–180 (2003)

    Article  Google Scholar 

  2. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 93–202 (1980)

    Article  MathSciNet  Google Scholar 

  3. Kamat, V., Ganesan, S.: An Efficient Implementation of the Hough Transform for Detecting Vehicle License Plates Using DSPS. In: Proceedings of Real-Time Technology and Applications, pp. 58–59 (1995)

    Google Scholar 

  4. Yohimori, S., Mitsukura, Y., Fukumi, M., Akamatsu, N., Pedrycz, W.: License plate detection system by using threshold function and improved template matching method. In: IEEE Annual Meeting Fuzzy Information Processing NAFIPS 2004, vol. 1, pp. 357–362 (2004)

    Google Scholar 

  5. Neumann, L., Matas, J.: Real-Time Scene Text Localization and Recognition. In: CVPR 2012, Providence, Rhode Island, USA (2012)

    Google Scholar 

  6. Ashoori-Lalimi, M., Ghofrani, S.: An Efficient Method for Vehicle License Plate Detection in Complex Scenes. Circuits and Systems 2, 320–325 (2011)

    Article  Google Scholar 

  7. Bar-Yosef, I., Beckman, I., Kedem, K., Dinstein, I.: Binarization, character extraction, and writer identification of historical Hebrew calligraphy documents. Springer (2007), doi:10.1007/s10032-007-0041-5

    Google Scholar 

  8. Pratyusha, Y.S., Murthy, N.S., Sri RamaKrishna, K.: An Efficient Technique for Segmentation of Characters of Vehicle Identification Number Using Watershed Algorithm. International Journal of Advanced Engineering Sciences and Technologies 5(2), 187–194 (2011)

    Google Scholar 

  9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2) (February 2001)

    Google Scholar 

  10. Ying, H., Song, J., Ren, X.: Character segmentation for license plate by the separator symbols frame of reference. In: 2010 International Conference on Information Networking and Automation (ICINA), vol. 1, pp V1-438 - V1-442 (2010)

    Google Scholar 

  11. Drucker, H.: Fast Decision Tree Ensembles for Optical Character Recognition. In: Fifth Annual Symposium on Document Analysis and Information Retrieval, April 15-17 (1996)

    Google Scholar 

  12. Malon, C., Uchida, S., Suzuki, M.: Support Vector Machines for Mathematical Symbol Recognition. The institute of electronics, information and communication engineers technical report of IEICE (2006)

    Google Scholar 

  13. Bruna, J., Mallat, S.: Invariant Scattering Convolution Networks. IEEE Trans. on PAMI (to appear, 2013)

    Google Scholar 

  14. Kamvysselis, M.: Wavelet-based character recognition in curvature space. MIT Machine Learning (6.891, Paul Viola) Final Project

    Google Scholar 

  15. Wylie, S., Hilton, P.J.: Homology theory. An introduction to algebraic topology. Bull. Amer. Math. Soc. 70(3), 333–335 (1964)

    Article  MathSciNet  Google Scholar 

  16. Ghrist, R.: Barcodes: The Persistent Topology of Data. Bulletin (New Series) of the American Mathematical Society 45(1), 61–75 (2008) S 0273-0979(07)01191-3

    Google Scholar 

  17. Kangin, D., Kolev, G., Vikhoreva, A.: Further Parameters Estimation of Neocognitron Neural Network Modification with FFT Convolution. Journal of Telecommunication Electronic and Computer Engineering 4(2) (July-December 2012)

    Google Scholar 

  18. Canny, J.: A Computational Approach To Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Article  Google Scholar 

  19. Shapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37, 297–336 (1999)

    Article  Google Scholar 

  20. Neumann, L., Matas, J.: Text localization in real world images based on conditional random field. In: ICDAR-2011, pp. 687–691 (2011)

    Google Scholar 

  21. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzy, A.: Gradient flows and geometric active contour models. In: Proc. Int. Conf. Computer Vision, Cambridge, MA, pp. 810–815 (1995)

    Google Scholar 

  22. Kohonen, T.: Self-organizing maps. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  23. Briggs, W.L., Henson, V.E.: The DFT: an owner’s manual for the discrete Fourier transform, pp. 143–179. Society of Industrial and Applied Mathematics, PA (1995)

    Book  MATH  Google Scholar 

  24. Guyon, I., Makhoul, J., Schwartz, R.M., Vapnik, V.: What Size Test Set Gives Good Error Rate Estimates? IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 52–64 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kangin, D., Kolev, G., Angelov, P. (2013). Vehicle Plate Recognition Using Improved Neocognitron Neural Network. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40728-4_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40727-7

  • Online ISBN: 978-3-642-40728-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics