iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-642-40725-3_9
Encoding Timed Models as Uniform Labeled Transition Systems | SpringerLink
Skip to main content

Encoding Timed Models as Uniform Labeled Transition Systems

  • Conference paper
Computer Performance Engineering (EPEW 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8168))

Included in the following conference series:

Abstract

We provide a unifying view of timed models such as timed automata, probabilistic timed automata, and Markov automata. The timed models and their bisimulation semantics are encoded in the framework of uniform labeled transition systems. In this unifying framework, we show that the timed bisimilarities present in the literature can be re-obtained and that a new bisimilarity, of which we exhibit the modal logic characterization, can be introduced for timed models including probabilities. We finally highlight similarities and differences among the models.

Work partially supported by the MIUR-PRIN Project CINA and the European Commission FP7-ICT-FET Proactive Project TOPDRIM (grant agreement no. 318121).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive power of silent transitions in timed automata. Fundamenta Informaticae 36, 145–182 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Bernardo, M.: On the expressiveness of Markovian process calculi with durational and durationless actions. In: Proc. of GANDALF 2010. EPTCS, vol. 25, pp. 199–213 (2010)

    Google Scholar 

  4. Bernardo, M., De Nicola, R., Loreti, M.: A uniform framework for modeling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences. Information and Computation 225, 29–82 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cerans, K.: Decidability of bisimulation equivalences for parallel timer processes. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Corradini, F.: Absolute versus relative time in process algebras. Information and Computation 156, 122–172 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: Proc. of LICS 2010, pp. 342–351. IEEE-CS Press (2010)

    Google Scholar 

  8. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32, 137–162 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Information and Computation 111, 193–244 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  11. Keller, R.M.: Formal verification of parallel programs. Communications of the ACM 19, 371–384 (1976)

    Article  MATH  Google Scholar 

  12. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theoretical Computer Science 282, 101–150 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Weak bisimulation for probabilistic timed automata. Theoretical Computer Science 411, 4291–4322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94, 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Larsen, K.G., Yi, W.: Time abstracted bisimulation: Implicit specifications and decidability. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 160–176. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  16. Moller, F., Tofts, C.: A temporal calculus of communicating systems. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer, Heidelberg (1990)

    Google Scholar 

  17. Moller, F., Tofts, C.: Behavioural abstraction in TCCS. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 559–570. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  18. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD Thesis (1995)

    Google Scholar 

  19. Sproston, J., Troina, A.: Simulation and bisimulation for probabilistic timed automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 213–227. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Yi, W.: CCS + Time = An Interleaving Model for Real Time Systems. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 217–228. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernardo, M., Tesei, L. (2013). Encoding Timed Models as Uniform Labeled Transition Systems. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds) Computer Performance Engineering. EPEW 2013. Lecture Notes in Computer Science, vol 8168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40725-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40725-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40724-6

  • Online ISBN: 978-3-642-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics